Chadi Sayde

Assistant Professor

  • 919-515-6702
  • D S Weaver Labs 184
  • View CV

Dr. Sayde grew up in a multi-generational farming family. From an early age, he was exposed daily to the practical challenges of agricultural production under the rapidly increasing impacts of climate change on available water resources. This was the main motivation for him to seek a B.S. degree in agricultural engineering from the University of Holy Spirit, Lebanon, then a M.S. degree in Land and Water Resources Management from the Mediterranean Agricultural Institute of Bari, Italy. Finally, he received his Ph.D. in Water Resources Engineering from Oregon State University (OSU). He was advised by one of the pioneers in optimum irrigation management, Dr. Marshall English, as well asĀ one of the world leaders in vadose zone hydrology and environmental monitoring, Dr. John Selker. In his PhD and post-doctoral work at OSU he focused on developing cutting edge tools that allow the interrogation of our environment at a range of temporal and spatial scales never attempted before. For instance, he demonstrated the feasibility of using actively heated fiber optics (soil-AHFO) method in conjunction with Distributed Temperature Sensing (DTS) to quantify soil water content and fluxes at spatial scales spanning over 4 orders of magnitude (0.1 m to 1,000 m) and temporal scale well below 1 h. He also developed a novel approach to continuously measure wind speed simultaneously at thousands of points using actively heated fiber optics (air-AHFO). Dr. Sayde joined the Department of Biological and Agricultural Engineering in January of 2017 as an assistant professor.

Education

Ph.D. 2012

Water Resources Engineering

Oregon State University

M.S. 2002

Land and Water Resources Management

Istituto Agronomico Mediterraneo di Bari, Italy

B.S. 1999

Agricultural Engineering

University of Holy Spirit, Kaslik, Lebanon

Research Description

Dr. Sayde believes that sustainable management of our agricultural and natural systems requires a paradigm shift in the way we manage our water. This paradigm shift will be largely driven by a new generation of physically based models and tools that enable continuous monitoring of our environment over wide range of temporal and spatial scales. Dr. Sayde research is focused on developing and employing advanced models and sensing systems to quantify water and energy movement across the soil-plant-atmosphere continuum from individual plants, to field and watershed scales. His objectives are to employ the ultra-high density of initial and boundary conditions measurements across the landscape to i) understand the underlying physical processes and the interaction between water, atmosphere, soil, topography, and vegetation, and ii) formulate engineered solutions to agricultural water management challenges that optimize economical return of water and minimize its adverse environmental impacts. Areas of interests include: - quantifying and understanding physical processes that control energy and water movement through the soil-plant-atmosphere continuum at 0.25-10,000 m scales -development of distributed environmental sensing systems -design and management optimization of irrigation systems -development of physically based agricultural water management models