NCDOT Level III: Recertification

1. Hydrology
2. Erosion
3. Regulatory Issues
4. Open Channel Design
5. Sediment Retention BMPs
6. Below Water Table Borrow Pits

Rational Method for Estimating Peak Runoff Rate

$$
\begin{equation*}
Q=(C)(i)(A) \tag{Equation1.1}
\end{equation*}
$$

$Q=$ peak runoff or discharge rate in cubic feet per second (cfs),
C = Rational Method runoff coefficient (decimal ranging from 0 to 1),
$\mathrm{i}=$ rainfall intensity for a given return period in inches per hour (in/hr), and
$\mathrm{A}=$ watershed drainage area in acres (ac).
NCDOT return periods for design peak discharge:
10-year (most common)
25-year (Environmentally sensitive areas ESA)
Design rainfall intensity (i) need:
Return period and duration (=time of concentration)

This presentation materrial is property of North Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

Time of Concentration, t_{c}

Time for water to travel from the Most Remote Point (MRP) to the Point of Interest (POI)

Methods for estimating t_{c}

1. Jarrett Shortcut Method
2. Segmental Method (TR-55)

Need to Know:

1. Watershed Area, A (acres)
2. Flow Length from MRP to POI, L (ft)
3. Elevation Drop from MRP to POI, H (ft)

Compute Time of Concentration: t_{c}

Jarrett Shortcut: $\quad \mathrm{A}_{\text {Jarrett }}=460(\mathrm{~S}) \quad$ (Equation 1.4)
$\mathrm{A}_{\text {Jarrett }}=$ Jarrett Maximum Area in acres (ac), and
$\mathrm{S}=$ average watershed slope (ft/ft).

If the watershed area is less than the Jarrett Maximum Area, then $t_{c}=5 \mathrm{~min}$

NRCS Segmental Method (TR55) for Shallow Flow
Unpaved Areas: $\mathrm{t}_{\mathrm{c}}=0.001\left(\mathrm{~L}_{\text {fiow }}\right) / \mathrm{S}^{0.53} \quad$ (Equation 1.5)
$\mathrm{t}_{\mathrm{c}}=$ time of concentration in minutes (min),
$\mathrm{L}_{\text {flow }}=$ flow length from most remote point to point of interest (ft),
$\mathrm{S}=$ average watershed slope (ft/ft).

This presentation matêrial is property of North Carolina State University. Any use of this material is explicitly prohibited without the

Runoff Coefficient, C

Table 1.2. Rational Method C for Agricultural Areas. (Taken from Schwab et al., 1971).

Vegetation	Runoff Coefficient, C		
Slope	Sandy Loam ${ }^{1}$	Clay and Silt Loam ${ }^{2}$	Tight Clay 3
Forest			
$0-5 \%$ slope	0.10	0.30	0.40
$5-10 \%$ slope	0.25	0.35	0.50
$10-30 \%$ slope	0.30	0.50	0.60
Pasture			
$0-5 \%$ slope	0.10	0.30	0.40
$5-10 \%$ slope	0.16	0.36	0.55
$10-30 \%$ slope	0.22	0.42	0.60
Cultivated	0.30		
$0-5 \%$ slope	0.40	0.50	0.60
$5-10 \%$ slope	0.52	0.60	0.70
$10-30 \%$ slope		0.72	0.82

This presentation material is property of North
Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

Example: Rational Method

Determine the 10-year peak runoff rate, Q_{10}, for a 5-acre construction site watershed near Asheville with a flow length $=600 \mathrm{ft}$ and elevation drop $=36 \mathrm{ft}$. The land uses are shown below:

Land Use	A	C	(A) (C)
Forest, clay (11\%)	1	0.60	0.60
Bare soil, clay (7\%)	3	0.70	2.10
Grass, clay (3\%)	1	0.40	0.40
	sum =5 ac		sum =3.10

Weighted Runoff Coefficient: $\mathrm{C}=3.10 / 5=0.62$
Average watershed slope, $\mathrm{S}=36 / 600=0.06 \mathrm{ft} / \mathrm{ft}$
Jarrett Max Area $=460(0.06)=27.6 \mathrm{ac}$; Since $5<27.6$, use $\mathrm{t}_{\mathrm{c}}=5 \mathrm{~min}$
Rainfall intensity for 10-year storm, i_{10}, is determined from Table 1.1 for a 5 -minute rainfall in Asheville: $\mathrm{i}_{10}=6.96 \mathrm{in} / \mathrm{hr}$

Peak runoff rate, $Q_{10}=(0.62)(6.96)(5)=21.6 \mathrm{cfs}$

Emphasis on Diverting ‘Clean’ Runoff

Prioritize need for:

Stable conveyance

Erosion hazard of diverted water

Erosion hazard downslope

8

This presentation material is property of North Carolina State University. Any use of this material is explicitly prohibited without the

Worksheet

1.2. Estimate the 10 -year peak runoff rate, Q_{10}, for a 20 -acre construction site watershed near Raleigh with a flow length $=2000 \mathrm{ft}$ and elevation drop $=$ 60 ft . The land uses are 40% forest and 60% bare soil. Soil is sandy loam.

Land Use	A	C	$(\mathrm{A})(\mathrm{C})$
Forest	$20^{*} 0.4=8.0$	0.10	0.8
Bare soil	$20 * 0.6=12.0$	0.30	3.6
	sum $=20 \mathrm{ac}$		sum $=4.4$

Weighted Runoff Coefficient: C $=4.4$ / $20=0.22$
Average watershed slope, $\mathrm{S}=60 / 2000=0.03 \mathrm{ft} / \mathrm{ft}$
Jarrett Max Area $=460(0.03)=13.8$ ac; Since $13.8<20$, use other method
Segmental Method: $t_{c}=0.001(2000) / 0.03^{0.53}=12.8 \mathrm{~min}$; use $\mathrm{t}_{\mathrm{c}}=10 \mathrm{~min}$ Rainfall intensity, $\mathrm{i}_{10}=5.58 \mathrm{in} / \mathrm{hr}$
Peak runoff rate, $Q_{10}=(0.22)(5.58)(20)=24.6 \mathbf{c f s}$

This presentation materfal is property of North
Carolina State University. Any use of this material is explicitly prohibited without the

MODULE 2. Erosion

- Erosion Principles
- RUSLE: R, K, LS, CP

11

Universal Soil Loss Equation USLE / RUSLE

$A_{\text {erosion }}=(R)(K)(L S)(C P)$
(Equation 2.1)
$\mathrm{A}_{\text {erosion }}=$ longterm annual soil interrill + rill erosion in tons per acre per year (tons/ac-yr),
$\mathrm{R}=$ rainfall factor (dimensionless),
$\mathrm{K}=$ soil erodibility factor (dimensionless),
LS = slope-length factor (dimensionless),
$\mathrm{CP}=$ conservation practices factor (dimensionless).

This presentation matehtal is property of North Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

R, Rainfall Factor

- Represents rainfall energy that causes erosion
- Higher R = higher erosion potential
- Annual R values, Figure 2.1

13

This presentation materfal is property of North Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

K, Soil Erodibility Factor

- Represents soil's tendency to erode
- NRCS tables for most soils (Table 2.2)

Soil		B-Horizon	RUSLE	RUSLE	RUSLE	RUSLE
		Permeability				
Series	HSG	in/hr	T	K(A)	K(B)	K(C)
Ailey	B	0.6 to 2.0	2	0.15	0.24	0.24
Appling	B	0.6 to 2.0	4	0.24	0.28	0.28
Autryville	A	2.0 to 6.0	5	0.10	0.10	0.10
Badin	B	0.6 to 2.0	3	0.15	0.24	0.15
Belhaven	D	0.2 to 6.0	--	--	0.24	0.24
Cecil	B	0.6 to 2.0	4	0.24	0.28	-45

15

This presentation materqal is property of North Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

CP, Cover-Conservation Practices Factor

Represents the effect of land cover \& direction of rills/channels
Table 2.3 lists CP values (use high values)
letters denote
references

Bare soil condition	$\mathbf{C P}$
Fill	
Packed, smooth	1.00 a
Fresh disked	0.95 a
Rough (offset disk)	0.85 a
Cut	0.90 b
Loose to 12 inches, smooth	0.80 b
Loose to 12 inches, rough	1.00 b
Compacted by bulldozer	0.50 c
Compacted by bulldozer and tracked parallel to the contour	0.90 b
Rough, irregular tracked all directions	
Surface Condition with No Cover	1.3 d
Compact and smooth, scraped w/ bulldozer or scraper up / down hill	1.2 d
Compact and smooth, raked w/ bulldozer root rake up and down hill	1.2 d
Compact and smooth, scraped w/bulldozer or scraper across slope	0.9 d
Compact and smooth, raked w/bulldozer root rake across slope	1.0 d
Loose as a disked plow layer	

17

Example: Erosion Estimate

Estimate erosion from a 5-acre site in Raleigh during March-May with $\mathrm{R}=49$.
The site is 600 ft long with elevation drop of 48 ft , and soil type is Creedmoor.

Average slope $=48 / 600=0.08 \mathrm{ft} / \mathrm{ft}(8 \%$ slope $)$
Table 2.2: K value is 0.32 (assume B Horizon - subsoil)
Figure 2.3: LS value is 3.5 (slope length $=600 \mathrm{ft}$; slope $=8 \%$)
Table 2.3: CP value is 1.0 (assume loose surface with no cover)
Erosion rate $=(49)(0.32)(3.5)(1.0)=54.9$ tons/ac or 18.3 t/ac-mo. (MarchMay)
Total erosion for 5 acres $=(54.9)(5)=274.4$ tons (March-May)

If the construction period is July-September (partial-year $R=140$):
Erosion per acre $=(140)(0.32)(3.5)(1.0)=157$ tons/acre (Jul-Sep)
Total erosion for 5 acres $=(157)(5)=786$ tons (Jul-Sep)
This presentation materigal is property of North
Carolina State University. Any use of this material is explicitly prohibited without the

Secondary Road Erosion Estimate

$\mathrm{V}_{\text {ditch }}=\left(\mathrm{C}_{\text {ditch }}\right)(\mathrm{R})(\mathrm{K})\left(\mathrm{S}_{\text {ditch }}\right) \quad$ (Equation 2.2)
$\mathrm{V}_{\text {ditch }}=$ secondary road sediment volume expected in cubic feet per acre ($\mathrm{ft}^{3} / \mathrm{ac}$),
$\mathrm{C}_{\text {ditch }}=$ regression constant for secondary roads dependent on ditch side slopes,
$\mathrm{R}=$ Rainfall Factor for the duration of construction,
$\mathrm{K}=$ Soil Erodibility Factor (B or C horizon),
$\mathrm{S}_{\text {ditch }}=$ slope of secondary road ditch (ft/ft).
Values of C_{s} are determined using Table 2.4 depending on road ditch side slope.

ERODES Spreadsheet: download software from NCDOT Roadside Field Operations Downloads:
www.ncdot.org/doh/operations/dp_chief_eng/roadside/fi eldops/downloads

Side Slope	$\mathbf{C}_{\text {ditch }}$
$4: 1$	291
$3.5: 1$	341
$3: 1$	399
$2.5: 1$	467
$2: 1$	549
$1.5: 1$	659
$1: 1$	808
$0.75: 1$	916
$0.5: 1$	1067

Example: Secondary Road Erosion

Estimate erosion volume from a 2-acre secondary roadway construction during June-July in Carteret County with Goldsboro soil. The road ditch has a slope of $0.05 \mathrm{ft} / \mathrm{ft}$ and $2: 1$ side slopes.

Figures 2.1 and 2.2: Annual $R=340$, and Carteret County is in Region 117
Table 2.1: During June-July, partial-year $R=(0.14+0.23)(340)=126$
Table 2.2: K value is 0.24 (assume B Horizon - subsoil)
Table 2.4: $\mathrm{C}_{\text {ditch }}$ is 549 for $2: 1$ ditch side slopes
$V_{\text {ditch }}=(549)(126)(0.24)(0.05)=830 \mathrm{ft}^{3} / \mathrm{ac}(J u n-J u l)$
Total erosion for 2 acres $=(830)(2)=1,660 \mathrm{ft}^{3}(\mathrm{Jun}-\mathrm{Jul})$
To convert to cubic yards: Erosion = 1,660 / 27 = 61 cubic yards (Jun-Jul)

This presentation matê9al is property of North

Worksheet

2.1. Estimate erosion from a 5 -acre site in Wilmington during June-October with Cowee soil. The site is 800 ft long with elevation drop of 24 ft .

Average slope $=24 / 800=0.03 \mathrm{ft} / \mathrm{ft}$ (3% slope)
Figure 2.1 \& 2.2: Annual R value is 350 and Region 117
Partial-year $R=(0.14+0.23+0.20+0.15+0.06)(350)=273$
Table 2.2: K value is 0.28 (assume B Horizon - subsoil)
Figure 2.3: LS value is 1.1 (slope length $=800 \mathrm{ft}$; slope $=3 \%$)
Table 2.3: CP value is 1.0 (assume loose surface with no cover)
Erosion per acre $=(273)(0.28)(1.1)(1.0)=84.1$ tons/acre (Jun-Oct)
Total erosion for 5 acres $=(84.1)(5)=420$ tons (Jun-Oct)

MODULE 3. Regulatory Issues

1. NC Sediment Pollution Control Act (E\&SC Plans)
2. Self-Inspection
3. Jurisdictional Areas - Conditions and Restrictions

- US Army Corps of Engineers
- NC DENR Division of Water Quality

4. Environmentally Sensitive Area (ESA) \& Riparian Buffers
5. Reclamation Plans
6. NCG01 General Stormwater Permit

This presentation matêhal is property of North Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

NC Sediment Pollution Control Act (SPCA) Mandatory Standards

1. E\&SC plan must be submitted 30 days prior to disturbance for areas greater than or equal to 1 acre
2. Land disturbing activity must be conducted in accordance with approved E\&SC Plan
3. Establish sufficient buffer zone between work zone and water courses
4. Provide groundcover on slopes within 21 calendar days after any phase of grading (NCG-01 takes precedence)
5. The angle of cut and fill slopes shall be no greater than sufficient for proper stabilization

NCG010000 (NCG01)		
Site Area Description	Time Frame	Stabilization Time Frame Exceptions
Perimeter dikes, swales, ditches and slopes	7 days	None
High Quality Water (HQW) Zones	7 days	None
Slopes steeper than 3:1	7 days	If slopes are 10 ft or less in height and are not steeper than 2:1, then 14 days are allowed
Slopes 3:1 or flatter	14 days	7-days for slopes greater than 50 feet in length
All other areas with slopes flatter than 4:1	14 days	None (except for perimeters and HQW Zones)

This presentation matêtal is property of North Carolina State University. Any use of this material is explicitly prohibited without the

During Active Use of Borrow Pits

- Delineate buffer zones
- Install EC devices as per approved E\&SC Plan
- Excavate/Build slopes in manner that allows for seeding of slopes
- Stage seed slopes
- Monitor the turbidity of Borrow Pit discharge

Turbidity

Clarity of water (light passes through) measured in Nephelometric Turbidity Units (NTUs)

Surface Water Classification	Turbidity Not to Exceed Limit* (NTUs)
Streams	50
Lakes \& Reservoirs	25
Trout Waters	10

* If turbidity exceeds these levels due to natural background conditions, the existing turbidity level cannot be increased

This presentation materqal is property of North Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

MODULE 4. Open Channel Design

Table 4.1. NCDOT guidelines for selecting channel linings.
Channel Slope (\%) Recommended Channel Lining
< 1.5 Seed and Mulch
1.5 to $4.0 \quad$ Temporary Liners (RECP)
$>=4.0 \quad$ Turf Reinforced Mats or Hard

27

Selecting a Channel Lining

$$
\begin{equation*}
\tau=(\gamma)\left(\mathrm{d}_{\text {chan }}\right)\left(\mathrm{S}_{\text {chan }}\right) \tag{Equation4.1,pg22}
\end{equation*}
$$

$\tau=$ average tractive force acting on the channel lining (lbs/ft²)
$\gamma=$ unit weight of water, assumed to be $62.4 \mathrm{lbs} / \mathrm{ft}^{3}$
$\mathrm{d}_{\text {chan }}=$ depth of flow in the channel (ft)
$\mathrm{S}_{\text {chan }}=$ slope of the channel (ft/ft)
Select a channel lining that will resist the tractive force.
Example: Select a lining for a ditch with channel slope of $0.02 \mathrm{ft} / \mathrm{ft}$ and flow depth of 0.8 ft . NCDOT guidelines (Table 4.1) recommend temporary liner.
$\tau=\left(62.4 \mathrm{lb} / \mathrm{ft}^{3}\right)(0.8 \mathrm{ft})(0.02 \mathrm{ft} / \mathrm{ft})=1.0 \mathrm{lb} / \mathrm{ft}^{2}$
Table 4.3 (pg 23): Select a RECP with allowable tractive force $>1.0 \mathrm{lb}$ 服 2
This presentation material is property of North Carolina State University. Any use of this material is explicitly prohibited without the

Worksheet

4.1. Select a suitable channel liner for a triangular ditch with maximum depth of 1.2 ft and slope of 4.2%.
Table 4.1: NCDOT guidelines for $>4 \%$ slope require TRM.

Equation 4.1: $\tau=\left(62.4 \mathrm{lbs} / \mathrm{ft}^{3}\right)(1.2 \mathrm{ft})(0.042 \mathrm{ft} / \mathrm{ft})=3.14 \mathrm{lbs} / \mathrm{ft}^{2}$

Table 4.3: Select a TRM channel lining with a maximum allowable tractive force greater than $3.14 \mathrm{lbs} / \mathrm{ft}^{2}$ (N. American Green P550)

MODULE 5. Sediment Retention BMPs for NCDOT

1. Selection \& Design Considerations
2. BMP Design Criteria
3. Example Specs and Calculations

NCDOT Roadside Environmental Unit:
http://ncdot.gov/doh/operations/dp_chief_eng/roadside/soil_water/

This presentation matergal is property of North
Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

Sediment Reten Table 1. BMP Selection		on BMPs					
	Location	Catchment	Structure	Sed. CtI. Stone	Surface Area	Volume	Function
T. Rock Sed. Dam A	Swale/large ditch	<1 ac.	Class I	Yes	$435 Q_{10}$	$3600 \mathrm{ft}^{3} / \mathrm{cac}$	Remove sand
T. Rock Sed. Dam B	Drainage outlet	$<1 \mathrm{ac}$.	Class B	Yes	$435 Q_{10}$	$3600 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
Silt Basin B	Drainage outlet/ Adjacent to inlet	< 3 ac .	Earth	No	$\begin{array}{\|l\|} \hline \begin{array}{l} 435 Q_{10} \\ \left(325 Q_{10} @\right. \\ \text { inlets) } \end{array} \\ \hline \end{array}$	$3600 \mathrm{ft}^{3} / \mathrm{ac}$ ($1800 \mathrm{ft}^{3} / \mathrm{ac}$ @ inlets)	Remove sand
Skimmer Basin	Drainage outlet	$<10 \mathrm{ac}$.	Earth	No	$325 \mathrm{Q}_{10}$	$1800 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
Infiltration Basin	Drainage outlet	$<10 \mathrm{ac}$.	Earth	No	$325 \mathrm{Q}_{10}$	$1800 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
Riser Basin(non-perforated riser w/ skimmer)	Drainage outlet	$<100 \mathrm{ac}$.	Earth	No	$435 \mathrm{Q}_{10}$	$1800 \mathrm{ft}^{3} / \mathrm{ac}$	Remove silt, clay
Stilling Basin/Pumped	Near Borrow Pit/Culvert	N/A	Earth and Stone	No	2:1 L:W ratio	Based on dewatering	Remove silt, clay
Sp. Stilling Basin(Silt Bag)	Near stream	N/A	Filter Fabric	Yes	N/A	Variable	Remove sand
Rock Pipe Inlet Sed. Trap A	Pipe inlet	$<1 \mathrm{ac}$.	Class B	Yes	N/A	$3600 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
Rock Pipe Inlet Sed. Trap B	Pipe inlet	$<1 \mathrm{ac}$.	Class A	Yes	N/A	$3600 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
Slope Drain w/ Berm	Fill Slopes	<1/2ac.	12-inch pipe	No	N/A	N/A	Convey concentrated runoff
Rock Inlet Sed. Trap A	Stormwater Inlet	$<1 \mathrm{ac}$.	Class B	Yes	N/A	$3600 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
Rock Inlet Sed. Trap B	Stormwater Inlet	$<1 \mathrm{ac}$.	Class A	Yes	N/A	$3600 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
Rock Inlet Sed. Trap C	Stormwater Inlet	<1 ac.	$1 /{ }^{1 / 4}$ wire mesh	Yes	N/A	N/A	Remove sand
T. Rock Silt Check A	Drainage outlet	$<1 \mathrm{ac}$.	Class B	Yes	$435 \mathrm{Q}_{10}$	$3600 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
T. Rock Silt Check B	Channel	<1/2ac.	Class B	No	N/A	N/A	Reduce flow velocity
Temporary Earth Berm	Project perimeter	$<5 \mathrm{ac}$.	Earth	No	N/A	N/A	Divert offsite runoff
Temporary Silt Fence	Bottom of slope	$\begin{aligned} & <1 / 4 \text { acre per } \\ & 100 \text { feet }<2 \% \text { \% } \end{aligned}$	Silt fence	No	N/A	N/A	Create small basin; Remove sand, silt
Special Sediment Control Fence	Bottom of slope	<1/2 ac.	$1 / 4^{\prime \prime}$ wire mesh	Yes	N/A	N/A	Remove sand
Temporary Silt Ditch	Bottom of slope	$<5 \mathrm{ac}$.	Earth	No	N/A	N/A	Carry sediment/water
Temporary Diversion	Project \& Stream	< 5 ac.	Earth	No	N/A	N/A	Divert turbid water
Earth Berm	perimeter	< 5 ac .	Earth	No	N/A	N/A	Divert clean or turbid water
Clean Water Diversion	Project perimeter	$<5 \mathrm{ac}$.	Earth \& Fabric	No	N/A	N/A	Divert clean water
Construction Entrance	Exit to road	N/A	Class A	No	N/A	N/A	Clean truck tires
Safety Fence	Permitted Areas	N/A	Orange fence	No	N/A	N/A	Define permitted boundary
Borrow Pit Dewatering Basin	Adjacent to Borrow Pits	N/A	Earth	No	N/A	8.02xQxT	Remove Sand and reduce turbidity
Wattle/Coir Fiber Wattle	Channel	<1/2 ac.	Natural Fibers	No	N/A	N/A	Incorporate PAM
Silt Check A with Matting and PAM	Channel	<1/2 ac.	Class B	Yes	N/A	N/A	Reduce flow B\&locity and incorporate PAM

Porous Baffle Spacing
 Baffles required in Silt Basins at drainage turnouts, Type A and B Temporary Rock Sediment Dams, Skimmer Basins, Stilling Basins:
 3 baffles evenly-spaced if basin length $>20 \mathrm{ft}$ $\underline{2}$ baffles evenly-spaced if basin length $10-20 \mathrm{ft}$ 1 baffle if basin length $\leq 10 \mathrm{ft}$ (State Forces)

Weir Length for Spillway
Skimmers and Infiltration Basins:
Weir Length $=Q_{\text {peak }} / 0.4$
Temporary Sediment Dam - Type B:
Minimum 4ft for 1 acre or less

This presentation matểal is property of North
Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

33
Skimmer Basin
Drainage area <10 ac
Surface Area $=325 \mathrm{Q}_{10}$ or $325 \mathrm{Q}_{25}$

Volume $=1800 \mathrm{ft} 3 / \mathrm{ac}$ disturbed
Depth $=3 \mathrm{ft}$ at weir
Coir Baffles (3)
L:W ratio 3:1 to 5:1

Skimmer Basin

IS

A temporary basin with a trapezoidal spillway lined with filter fabric and equipped with a floating skimmer.

USE

In sensitive watershed areas and in locations where the drainage area is too large for standard rock weir outlet.

CONSTRUCT

Basin with a Faircloth Skimmer at the outlet, a trapezoidal emergency spillway lined with filter fabric, and 3 coir fiber baffles. Storage capacity fabric, and 3 coir fiber baffles. Storage capacity
is 1800 cubic ft . per disturbed acre and surface is 1800 cubic ft . per disturbed acre and surfa
area must accommodate the 10 -year storm runoff. Limit the dam height to 5 ft .

This presentation matêfal is property of North Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

35

Design Steps for Basins, Sediment Dams, \& Traps

1. Minimum volume and surface area
2. Width and length at the weir/spillway height based on sideslopes
3. Emergency spillway weir length
4. Baffle spacing

This presentation matêfal is property of North Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

Example: Temp Rock Sediment Dam Type B

Disturbed area $=1 \mathrm{ac} ; \mathrm{Q}_{10}=2.5 \mathrm{cfs}$
Interior sideslopes = 1.5:1; L:W = 3:1

1. Minimum Volume and Surface Area:

Minimum Volume $=3600 \times 1 \mathrm{ac}=3600 \mathrm{ft}^{3}$
Minimum Surface Area $=435 \mathrm{Q}_{10}=435 \times 2.5 \mathrm{cfs}=1088 \mathrm{ft}^{2}$
Depth $=$ Volume $/$ Area $=3600 \mathrm{ft}^{3} / 1088 \mathrm{ft}^{2}=3.3 \mathrm{ft}$
For DOT projects, Design Depth $=2$ to 3 ft
Therefore, use depth $=3 \mathrm{ft}$
Adjusted Area $=$ Volume $/$ depth $=3600 / 3=1200 \mathrm{ft}^{2}$
Surface area must be greater to account for sideslopes

Example: Temp Rock Sed Dam Type B

2. Width and depth at top and base (trial \& error):

Start with area $=1,200 \mathrm{ft}^{2}$ and a 3:1 length to width ratio

$$
\text { Trial Width, } W_{\text {top }}=\sqrt{\frac{A}{L \text { to } W \text { ratio }}}=\sqrt{\frac{1200}{3}}=20 \mathrm{ft}
$$

To account for sideslopes, add to top width (try 3 ft):

$$
\begin{aligned}
& \text { Trial } \mathrm{W}_{\text {top }}=20+3=23 \mathrm{ft} \\
& \text { Trial } \mathrm{L}_{\text {top }}=3 \times \mathrm{W}_{\text {top }}=3 \times 23=69 \mathrm{ft}
\end{aligned}
$$

This presentation matehigal is property of North Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

Example: Temp Rock Sed Dam Type B

Calculate base width and base length using 1.5 to 1 sideslopes: $\mathrm{W}_{\text {base }}=\mathrm{W}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=23-(3 \times 1.5 \times 2)=14 \mathrm{ft}$ $\mathrm{L}_{\text {base }}=\mathrm{L}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=69-(3 \times 1.5 \times 2)=60 \mathrm{ft}$

Example: Temp Rock Sed Dam Type B
Calculate volume (minimum required $=3,600 \mathrm{ft}^{3}$):

$$
\begin{aligned}
& \text { Volume }=\frac{\mathrm{d}}{3}\left[\mathrm{~W}_{\text {top }} \mathrm{L}_{\text {top }}+\mathrm{W}_{\text {base }} \mathrm{L}_{\text {base }}+\left(\frac{\mathrm{W}_{\text {top }} \mathrm{L}_{\text {base }}+\mathrm{W}_{\text {base }} L_{\text {top }}}{2}\right)\right] \\
& \text { Volume }=\frac{3}{3}\left[(23)(69)+(14)(60)+\left(\frac{(23)(60)+(14)(69)}{2}\right)\right]
\end{aligned}
$$

Volume $=3600 \mathrm{ft}^{3}$ (meets minimum requirement)

Surface Area (at weir elevation) $=23 \times 69=1587 \mathrm{ft}^{2}$

This presentation matêqal is property of North
Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

Example: Temp Rock Sed Dam Type B

Principal spillway:
Water exits the basin via the Class B stone dam covered with sediment control stone

Rock weir:
Weir must be sized according to weir chart based on total drainage area (1 acre)

Weir Length $(1$ acre $)=4 \mathrm{ft}$
Baffles:
Since basin is 69 ft long, use 3 baffles spaced evenly. Divided the basin into 4 quarters, each 17 ft long

41

Design Steps: Skimmer Basin with Baffles

1. Minimum volume and surface area
2. Width and length based on sideslopes
3. Dewatering flow rate (top 2 ft in 3 days)
4. Skimmer size and orifice diameter
5. Primary spillway barrel pipe size
6. Emergency spillway weir length
7. Baffle spacing

Skimmer Basin

This presentation matếlal is property of North
Carolina State University. Any use of this material is explicitly prohibited without the

Example: Skimmer Basin with Baffles

Disturbed area $=10 \mathrm{ac} ; \mathrm{Q}_{10}=17 \mathrm{cfs} ;$ Dewater time $=3$ days; Interior sideslopes $=1.5: 1 ; \mathrm{L}: \mathrm{W}=3: 1$

1. Minimum Volume and Surface Area:

Minimum Volume $=1800 \times 10$ acres $=18,000 \mathrm{ft}^{3}$
Minimum Surface Area $=325 \mathrm{Q}_{10}=325 \times 17 \mathrm{cfs}=5,525 \mathrm{ft}^{2}$
Depth $=$ Volume $/$ Area $=18,000 \mathrm{ft}^{3} / 5,525 \mathrm{ft}^{2}=3.1 \mathrm{ft}$
For DOT projects, $\underline{\text { Design Depth }=3 \mathrm{ft}}$
Therefore, adjust minimum surface area up:
Area $_{\text {min }}=$ Volume $/$ Design Depth $=18,000 \mathrm{ft}^{3} / 3 \mathrm{ft}=6,000 \mathrm{ft}^{2}$
Surface area must be greater to account for sideslopes

43

Example: Skimmer Basin with Baffles

2. Width and length at top and base (trial \& error):

Start with area $=6,000 \mathrm{ft}^{2}$ and a 3 to 1 length to width ratio

$$
\text { Trial Width, } \mathrm{W}_{\text {top }}=\sqrt{\frac{\mathrm{A}}{\mathrm{~L} \text { to } \mathrm{W} \text { ratio }}}=\sqrt{\frac{6,000}{3}}=45 \mathrm{ft}
$$

To account for sideslopes, add to top width (try 3 ft):

$$
\begin{aligned}
& \text { Trial } \mathrm{W}_{\text {top }}=45+3=48 \mathrm{ft} \\
& \text { Trial } \mathrm{L}_{\text {top }}=3 \times \mathrm{W}_{\text {top }}=3 \times 48=144 \mathrm{ft}
\end{aligned}
$$

This presentation matéffal is property of North Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

Example: Skimmer Basin with Baffles

Calculate base width and base length using 1.5 to 1 sideslopes: $W_{\text {base }}=W_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=48-(3 \times 1.5 \times 2)=39 \mathrm{ft}$ $\mathrm{L}_{\text {base }}=\mathrm{L}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=144-(3 \times 1.5 \times 2)=135 \mathrm{ft}$

45

Example: Skimmer Basin with Baffles

Calculate volume (minimum required $=18,000 \mathrm{ft}^{3}$):

$$
\begin{aligned}
& \text { Volume }=\frac{\mathrm{d}}{3}\left[\mathrm{~W}_{\text {top }} \mathrm{L}_{\text {top }}+\mathrm{W}_{\text {base }} \mathrm{L}_{\text {base }}+\left(\frac{\mathrm{W}_{\text {top }} \mathrm{L}_{\text {base }}+\mathrm{W}_{\text {base }} \mathrm{L}_{\text {top }}}{2}\right)\right] \\
& \text { Volume }=\frac{3}{3}\left[(48)(144)+(39)(135)+\left(\frac{(48)(135)+(39)(144)}{2}\right)\right]
\end{aligned}
$$

Volume $=18,225 \mathrm{ft}^{3}\left(>18,000 \mathrm{ft}^{3}\right.$ minimum $)$

Surface Area (weir elevation) $=48 \times 144=6,912 \mathrm{ft}^{2}>5,525 \mathrm{ft}^{2}$

This presentation matefgal is property of North
Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

Example: Skimmer Basin with Baffles

3. Dewatering flow rate (top $\mathbf{2 ~ f t ~ i n ~} \mathbf{3}$ days)

Calculate width \& length at depth $=1 \mathrm{ft}$ using $1.5: 1$ sideslopes:
$\mathrm{W}_{1 \mathrm{ft}}=\mathrm{W}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=48-(2 \times 1.5 \times 2)=42 \mathrm{ft}$
$L_{1 \mathrm{ft}}=\mathrm{L}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=144-(2 \times 1.5 \times 2)=138 \mathrm{ft}$
Calculate volume in the top 2 ft

$$
\begin{aligned}
& \text { Volume }=\frac{d}{3}\left[W_{\text {top }} L_{\text {top }}+W_{1 f t} L_{1 \text { ft }}+\left(\frac{W_{\text {top }} L_{\text {fft }}+W_{\text {fft }} L_{\text {top }}}{2}\right)\right] \\
& \text { Volume }=\frac{2}{3}\left[(48)(144)+(42)(138)+\left(\frac{(48)(138)+(42)(144)}{2}\right)\right]
\end{aligned}
$$

Volume in top $2 \mathrm{ft}=12,696 \mathrm{ft}^{3}$

Example: Skimmer Basin with Baffles

4. Select Faircloth Skimmer to dewater top $\mathbf{2 ~ f t ~ i n ~} \mathbf{3}$ days

Volume in top $2 \mathrm{ft}, \mathrm{V}_{\text {skim }}=12,696 \mathrm{ft}^{3}$
Dewater Rate, $Q_{\text {skim }}=\mathrm{V}_{\text {skim }} / \mathrm{t}_{\text {dewater }}=12,696 / 3=4,232 \mathrm{ft}^{3} /$ day

Select the Skimmer Size to carry at least $4,232 \mathrm{ft}^{3} /$ day
From Table 5.1, a 2.5 -inch skimmer carries $6,234 \mathrm{ft}^{3} /$ day with driving head, $\mathrm{H}_{\text {skim }}=$ 0.208 ft

Why not use a 2-inch skimmer?

This presentation matêfial is property of North
Carolina State University. Any use of this material is explicitly prohibited without the

Select skimmer based on flow rate, Table 5.1

Skimmer Diameter (inches)	$\mathrm{Q}_{\text {skimmer }}$ Max Outflow Rate (ft $3 /$ day) $*$	$\mathrm{H}_{\text {skimmer }}$ Driving Head (ft) $*$
1.5	1,728	0.125
2.0	3,283	0.167
2.5	6,234	0.208
3.0	9,774	0.250
4.0	20,109	0.333
5.0	32,832	0.333
6.0	51,840	0.417
8.0	97,978	0.500

* Updated 2007: www.fairclothskimmer.com

49

Orifice Diameter for Skimmer

$$
D_{\text {orifice }}=\sqrt{\frac{Q_{\text {skim }}}{2310 \sqrt{H_{\text {skim }}}}}
$$

(Equation 5.2)
$D_{\text {orifice }}=$ diameter of the skimmer orifice in inches (in)
$\mathrm{Q}_{\text {skimmer }}=$ basin outflow rate in cubic feet per day ($\mathrm{ft}^{3} /$ day)
$\mathrm{H}_{\text {skimmer }}=$ driving head at the skimmer orifice from Table 5.1 in feet (ft)

$$
D_{\text {orifice }}=\sqrt{\frac{Q_{\text {skim }}}{2310 \sqrt{H_{\text {skim }}}}}=\sqrt{\frac{4,232}{2,310 \sqrt{0.208}}}=2.0 \text { inches }
$$

The orifice in the knockout plug is drilled to a 2-inch diameter.

This presentation matéf9al is property of North
Carolina State University. Any use of this material is explicitly prohibited without the

Example: Skimmer Basin with Baffles

5. Primary spillway barrel pipe size using $Q_{\text {skim }}=4,232$

NCDOT: Use smooth pipe on 1% slope (minimum 4-inch)
Figure 4.1 (Pipe Chart pg 27): At 1% slope, a 4-inch pipe carries up to $100 \mathrm{gpm}=19,300 \mathrm{ft}^{3} / \mathrm{day}$
6. Emergency spillway weir length:

NCDOT: $\mathrm{L}_{\text {weir }}=17 \mathrm{cfs} / 0.4=42.5 \mathrm{ft}$ or 43 ft

51

Example: Skimmer Basin with Baffles

7. Baffle Spacing:

For $L_{\text {top }}>20 \mathrm{ft}$, use 3 baffles to divide into 4 chambers:
Baffle spacing $=L_{\text {top }} / 4=144 / 4=36 \mathrm{ft}$

Not to Scale
This presentation matểal is property of North
Carolina State University. Any use of this material is explicitly prohibited without the

Worksheet 5.1. Infiltration Basin

Infiltration basin on Rains soil (permeability= $0.55 \mathrm{in} / \mathrm{hr}$) with drainage area of 8 acres?

Drainage area $=8 \mathrm{ac} ;$ permeability $=0.55 \mathrm{in} / \mathrm{hr}$

For NCDOT maximum depth $=3 \mathrm{ft}$
Dewatering time $=3 \mathrm{ft} \times \mathrm{hr} / 0.55 \mathrm{in} \times 12 \mathrm{in} / \mathrm{ft}=65.5 \mathrm{hr}$ or 2.7 days

Design volume $=1800 \times 8=14,400 \mathrm{ft}^{3}$
*NCDOT guidelines: drains in 3 days, drainage area <10ac., soil permeability at least $0.5 \mathrm{in} / \mathrm{hr}$

Worksheet 5.3. Skimmer Basin

Design: For a 5.5-acre construction site with $Q_{10}=12 \mathrm{cfs}$, design a basin to be dewatered in 3 days. Use 1.5:1 interior sideslopes and 3:1 length:width ratio.

1. Minimum Volume and Surface Area:

Minimum Volume $=1800 \times 5.5$ acres $=9,900 \mathrm{ft}^{3}$
Minimum Surface Area $=325 \mathrm{Q}_{10}=325 \times 12 \mathrm{cfs}=3,900 \mathrm{ft}^{2}$
Depth $=$ Volume $/$ Area $=9,900 \mathrm{ft}^{3} / 3,900 \mathrm{ft}^{2}=2.5 \mathrm{ft}$
For DOT projects, Design Depth $=3 \mathrm{ft}$

Surface area must be greater to account for sideslopes

This presentation mateffal is property of North Carolina State University. Any use of this material is explicitly prohibited without the

Worksheet 5.3. Skimmer Basin

2. Width and Length at top and base (trial \& error):

Start with area $=3,900 \mathrm{ft}^{2}$ and a 3:1 length:width ratio
Trial Width, $\mathrm{W}_{\text {top }}=\sqrt{\frac{\mathrm{A}}{\mathrm{L} \text { to } \mathrm{W} \text { ratio }}}=\sqrt{\frac{3,900}{3}}=36 \mathrm{ft}$

Trial width add 1 ft to width $\mathrm{W}_{\text {top }}=36+1=37 \mathrm{ft}$
Trial Length, $\mathrm{L}_{\text {top }}=3 \times 37=111 \mathrm{ft}$

Try this width and length with $1.5: 1$ sideslopes to check if volume $>9,900 \mathrm{ft}^{3}$

Worksheet 5.3. Skimmer Basin

Calculate base width and base length using 1.5 to 1 sideslopes: $\mathrm{W}_{\text {base }}=\mathrm{W}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=37-(3 \times 1.5 \times 2)=28 \mathrm{ft}$ $\mathrm{L}_{\text {base }}=\mathrm{L}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=111-(3 \times 1.5 \times 2)=102 \mathrm{ft}$

This presentation materqal is property of North
Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

Worksheet 5.3. Skimmer Basin

Calculate volume (minimum required $=9,900 \mathrm{ft}^{3}$):

$$
\begin{aligned}
& \text { Volume }=\frac{\mathrm{d}}{3}\left[\mathrm{~W}_{\text {top }} \mathrm{L}_{\text {top }}+\mathrm{W}_{\text {base }} \mathrm{L}_{\text {base }}+\left(\frac{\mathrm{W}_{\text {top }} \mathrm{L}_{\text {base }}+\mathrm{W}_{\text {base }} \mathrm{L}_{\text {top }}}{2}\right)\right] \\
& \text { Volume }=\frac{3}{3}\left[(37)(111)+(28)(102)+\left(\frac{(37)(102)+(28)(111)}{2}\right)\right]
\end{aligned}
$$

Volume $=10,404 \mathrm{ft}^{3}$ (meets minimum requirement)

Surface Area (at weir elevation) $=37 \times 111=4,107 \mathrm{ft}^{2}$

Worksheet 5.3. Skimmer Basin

Not to Scale

This presentation matê̊ial is property of North
Carolina State University. Any use of this material is explicitly prohibited without the

Worksheet 5.3. Skimmer Basin

3. Dewatering flow rate (top 2 ft in 3 days)

Calculate width \& length at depth $=1 \mathrm{ft}$ using $1.5: 1$ sideslopes:
$\mathrm{W}_{1 \mathrm{ft}}=\mathrm{W}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=37-(2 \times 1.5 \times 2)=31 \mathrm{ft}$
$L_{1 \text { ft }}=L_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=111-(2 \times 1.5 \times 2)=105 \mathrm{ft}$ Calculate volume in the top 2 ft

$$
\begin{aligned}
& \text { Volume }=\frac{\mathrm{d}}{3}\left[\mathrm{~W}_{\text {top }} \mathrm{L}_{\text {top }}+\mathrm{W}_{1 \mathrm{ft}} \mathrm{~L}_{1 \mathrm{ft}}+\left(\frac{\mathrm{W}_{\text {top }} \mathrm{L}_{1 \text { ft }}+\mathrm{W}_{1 \text { ft }} \mathrm{L}_{\text {top }}}{2}\right)\right] \\
& \text { Volume }=\frac{2}{3}\left[(37)(111)+(31)(105)+\left(\frac{(37)(105)+(31)(111)}{2}\right)\right]
\end{aligned}
$$

Volume in top $2 \mathrm{ft}=7,350 \mathrm{ft}^{3}$

Worksheet 5.3. Skimmer Basin

4. Select Faircloth Skimmer to dewater top $\mathbf{2 ~ f t ~ i n ~} \mathbf{3}$ days

Volume in top $2 \mathrm{ft}, \mathrm{V}_{\text {skim }}=7,350 \mathrm{ft}^{3}$
Daily $\mathrm{Q}_{\text {skim }}=7,350 / 3=2,450 \mathrm{ft}^{3} /$ day
Select the Skimmer Size to carry at least 2,450 $\mathrm{ft}^{3} /$ day
From Table 5.1, a 2-inch skimmer carries $3,283 \mathrm{ft}^{3} /$ day with driving head, $\mathrm{H}_{\text {skim }}=0.167$ ft

$$
\mathrm{D}_{\text {orifice }}=\sqrt{\frac{\mathrm{Q}_{\text {skim }}}{\text { orifice in the knockout plusims drilled to a } 1.6 \text {-inch diameter. }}=\sqrt{\frac{2,450}{2310 \sqrt{\mathrm{H}_{\text {sing }}}}}=1.6 \text { inches }}
$$

This presentation mateq9al is property of North Carolina State University. Any use of this material is explicitly prohibited without the

Select skimmer based on flow rate, Table 5.1

Skimmer Diameter (inches)	$\mathrm{Q}_{\text {skimmer }}$ Max Otflow Rate (ft $3 /$ day)	$\mathrm{H}_{\text {skimmer }}$ Driving Head (ft)
1.5	1,728	0.125
2.0	3,283	0.167
2.5	6,234	0.208
3.0	9,774	0.250
4.0	20,109	0.333
5.0	32,832	0.333
6.0	51,840	0.417
8.0	97,978	0.500

* Updated 2007: www.fairclothskimmer.com

Worksheet 5.3. Skimmer Basin

5. Primary spillway barrel pipe size using $Q_{\text {skim }}=2,450$

NCDOT: Use smooth pipe on 1\% slope (minimum 4-inch)
Figure 4.1 (Pipe Chart): At 1\% slope, a 4-inch pipe carries up to $100 \mathrm{gpm}=19,300 \mathrm{ft}^{3} /$ day
6. Emergency spillway weir length:

NCDOT: $L_{\text {weir }}=12 \mathrm{cfs} / 0.4=30 \mathrm{ft}$
7. Baffle Spacing:

Baffle spacing $=L_{\text {top }} / 4=111 / 4=28 \mathrm{ft}$

This presentation matê\}al is property of North
Carolina State University. Any use of this material is explicitly prohibited without the

MODULE 6: Below Water Table Borrow Pits Dewatering Options

Tier I Methods

- Borrow Pit Dewatering Basin
- Land Application (Irrigation)
- Geotextile Bags
- Alum
- Gypsum
- Polyacrylamide (PAM)

Tier II Methods [rare \& unique resources]

- Well Point Pumping
- Impoundments
- Cell Mining
- Sand Media Filtration
- Wet Mining

63

Borrow Pit Dewatering Basin

- Basin at pump outlet to settle sediment
- No area requirement
- Volume = pump rate \times detention time:
- Detention time $=2$ hours minimum

- $V_{\text {still }}=16\left(Q_{\text {still }}\right) Q=$ pump rate in gpm
- Max pump rate $=1,000 \mathrm{gpm}(2.2 \mathrm{cfs})$
- Maximum depth $=3 \mathrm{ft}$
- Earthen embankments are fill above grade
- $\mathrm{L}: \mathrm{W}=2: 1$ minimum
- Surface outlet:
- Non-perforated riser pipe (12-inch)
- Flashboard riser

This presentation matêflal is property of North
Carolina State University. Any use of this material is explicitly prohibited without the

Turbidity Reduction: PAM at $1 \mathrm{mg} / \mathrm{L}$ in stilling basin

Powder: mix 1 pound of PAM per 100 gallons of water

Figure 6.1: At $Q_{\text {still }}=1000$ gpm, inject liquid PAM mix at 1.3 gpm

Inject mix at pump intake (suction line) or just after water leaves pump

Floc-Log: turbulent flow 60-80 gpm inside corrugated plastic pipe (no inner liner)

65

Figure 6.1. PAM Injection (liquid mix)

This presentation mate千flal is property of North
Carolina State University. Any use of this material is explicitly prohibited without the

Below Water Table Sites: Wetland Protection

Type 1: Flow from wetland to pit
Type 2: Flow from pit to wetland
Does not require Skaggs Method calculations
Minimum 25 ft buffer (setback) from wetland
Minimum 50 ft buffer from stream
Type 3: Flow-through pits: wetland to pit on one side, pit to wetland on other side

For Types 1 \& 3 or uncertain flow direction:

- 400 ft buffer OR
- Skaggs Method calculations

Skaggs Method: Determine Setback

Wetland hydrology is defined as an area where the water table is normally within 1.0 ft of the soil surface for a continuous critical duration, defined as $5-12.5 \%$ of the growing season. The 5% was used in the Skaggs method.

Calculate "Lateral Effect," or setback, x

This presentation mate夭̊ํal is property of North
Carolina State University. Any use of this material is explicitly prohibited without the

Skaggs Method: Determine Setback

Soil Characteristics:

- Effective hydraulic conductivity, \mathbf{K}_{e} (Soil Survey or site investigation)
- Drainable porosity, $\mathrm{f}=0.035$ for DOT applications

Climate:

Threshold Time for water table drawdown of $0.83 \mathrm{ft}, \mathbf{T}_{\mathbf{2 5}}=\mathbf{t}$
Depth to water table at borrow pit: $d_{0}=2 \mathrm{ft}$

Surface Depressional Storage:

1 inch if area is relatively smooth
2 inches if area is rough with shallow depressions

69

$$
\begin{gathered}
\text { Effective Hydraulic Conductivity } \\
\mathrm{L} 1=\mathrm{d}_{1}=3.5 \mathrm{ft} \\
\mathrm{~L} 2=\mathrm{L} 1+\mathrm{d}_{2}=11.9 \mathrm{ft} \| \begin{array}{l}
\mathrm{K}_{1}=1.2 \mathrm{ft} / \mathrm{d} \\
\mathrm{~d}_{1}=3.5 \mathrm{ft} \\
\mathrm{~K}_{2}=3.7 \mathrm{ft} / \mathrm{d} \\
\mathrm{~d}_{2}=8.4 \mathrm{ft}
\end{array} \\
\mathrm{~L} 3=\mathrm{L} 2+\mathrm{d}_{3}=13.4 \mathrm{ft} \\
K_{e}=\frac{K_{1}=7.1 \mathrm{ft} / \mathrm{d}, \mathrm{~d}_{3}=1.5 \mathrm{ft}}{\mathrm{~K}_{1}+K_{2} d_{2}+K_{3} d_{3}} \\
d_{1}+d_{2}+d_{3} \\
K_{e}=\frac{1.2(3.5)+3.7(8.4)+7.1(1.5)}{3.5+8.4+1.5}=3.4 \mathrm{ft} / \mathrm{d} \\
70
\end{gathered}
$$

This presentation materfal is property of North
Carolina State University. Any use of this material is explicitly prohibited without the

Example: Skaggs Method

The wetland is located in Johnston County on a Rains soil. From wetland soil surface to impermeable/restrictive layer is 15 ft . Soil hydraulic conductivity is $4 \mathrm{ft} / \mathrm{day}$. The wetland has a natural rough surface. What is the minimum lateral setback?

71

This presentation materfal is property of North Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

73

Worksheet 6.2. Skaggs Method Software Input

For a borrow pit in Pitt County with soil (6 ft deep $\mathrm{K}=6 \mathrm{ft} /$ day; rest $\mathrm{K}=4$ $\mathrm{ft} /$ day), depth from natural wetland soil surface to the impermeable layer is 10 ft , Fill in the inputs for the Skaggs Method software program.

This presentation mateffal is property of North Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

75

This presentation material is property of North Carolina State University. Any use of this material is explicitly prohibited without the consent of the presenters.

