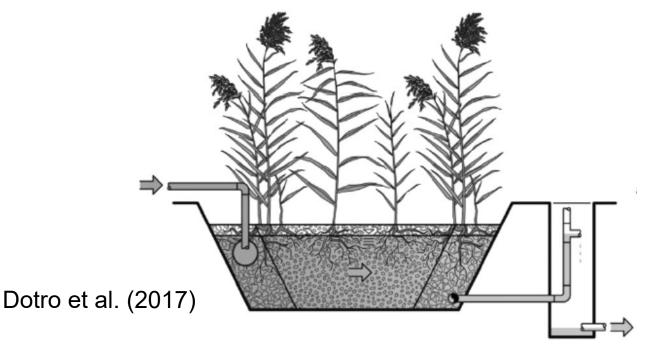
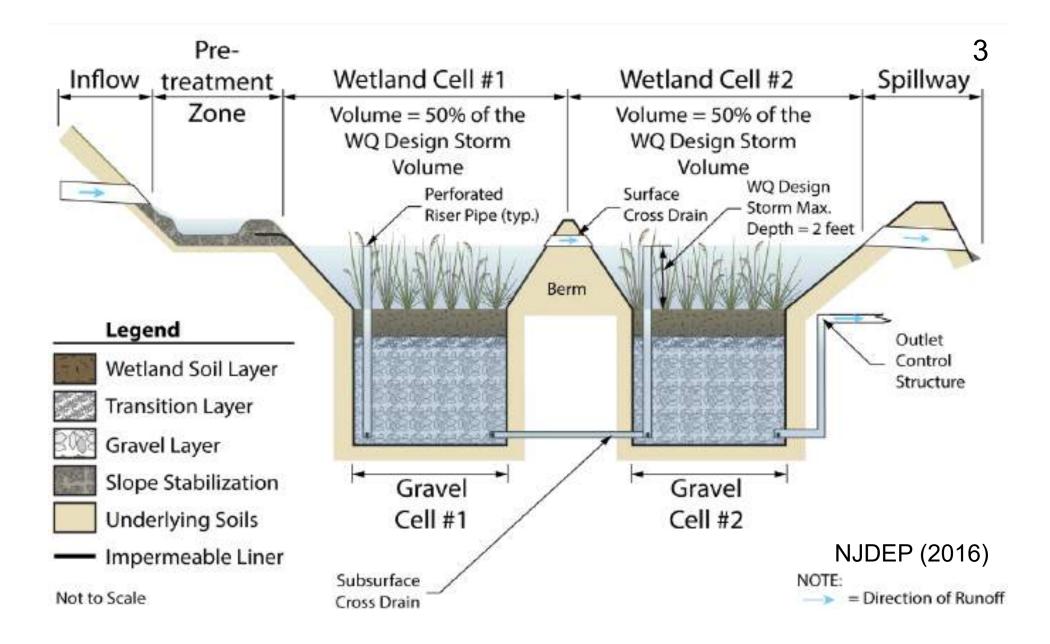


Subsurface Gravel Wetlands



Sarah Waickowski, P.E. Caleb Mitchell, E.I. William Hunt, Ph.D., P.E.

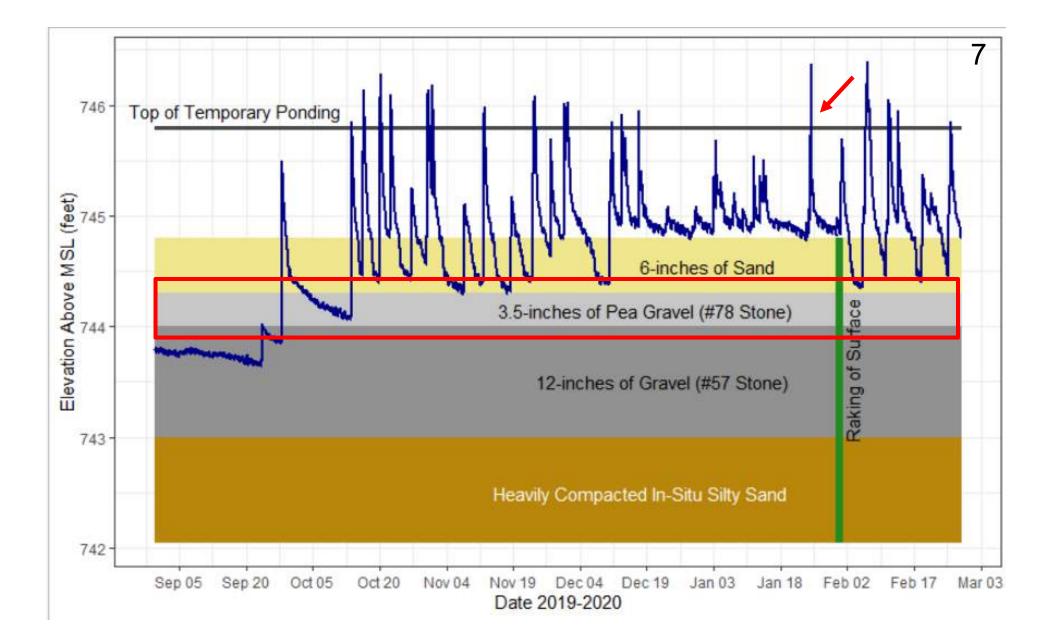


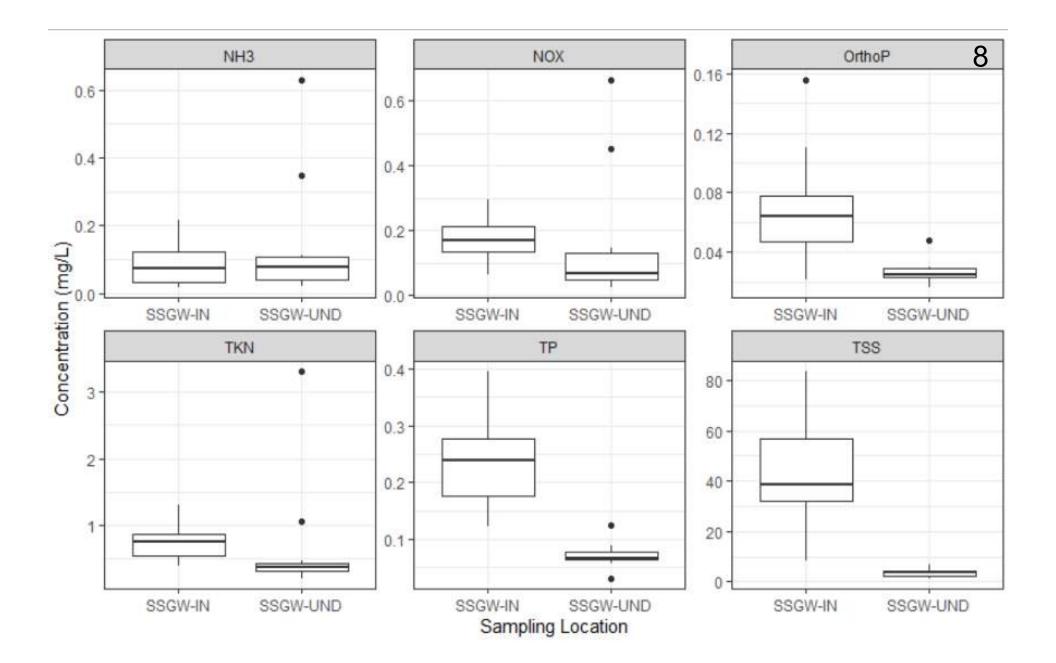
What are Subsurface Gravel Wetlands?

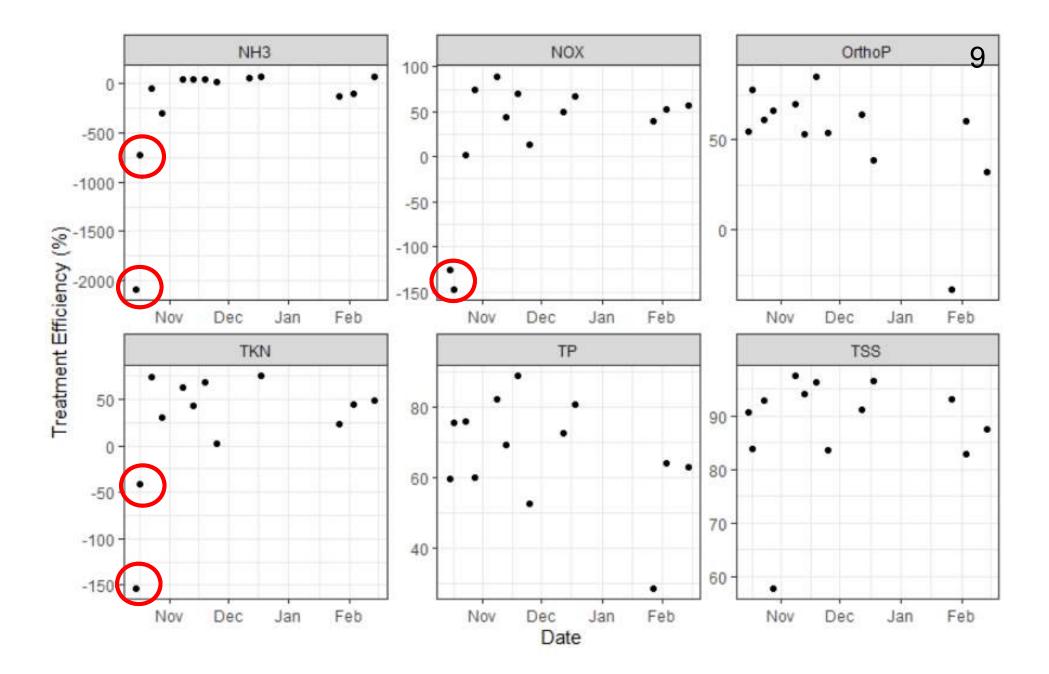
- Structural option for wastewater or stormwater treatment
- Treatment provided using horizontal flow through saturated gravel bed

Stormwater Wetlands vs. Gravel Wetlands

- Stormwater wetlands:
 - Constantly ponded water
 - Varying topography
 - Plant specific zones
- Gravel wetlands:
 - Temporarily pond water
 - Saturated gravel layer
 - Little variation in topography







Thank You!

https://stormwater.bae.ncsu.edu/

This presentation is copyrighted property of North Carolina State University. All rights reserved.

NC DEQ NEST Program and SCM EMCs

Sarah Waickowski, P.E. William Hunt, Ph.D., P.E.

Current NC DEQ NEST Program

- Program established to evaluate proprietary systems for stormwater management
- Minimum of two systems must be monitored
 - At least one system must be monitored in NC

Median Influent EMC	Applicable Performance Standard ^{1,2}		
< 20 mg/L	Invalid test		
20 – 35 mg/L	≥ 29% removal		
35 – 100 mg/L	<u>≤</u> 25 mg/L		
100 mg/L	≥ 75% removal		

Table 1: TSS Removal Standards for Primary SCMs

Figure 2: Required Performance Standard for Primary SCMs

Current NC DEQ NEST Program

- Effluent TN and TP EMCs for systems are based on monitoring data
- But research has shown influent concentrations impact effluent concentrations...

Is the system's water quality performance a result of low or "clean" influent concentrations or the system's treatment mechanisms?

Proposed Changes to NEST Program

- Establish influent thresholds for TN and TP to assess proprietary systems' water quality performance
- Thresholds identified using water quality data collected in NC from:
 - Bioretention cells, stormwater wetlands, wet ponds, dry ponds, sand filters, rainwater harvesting, disconnected impervious surfaces (DIS), level spreader-vegetated filter strips (LS-VFS), green roofs, Filterra, Silva Cells, permeable pavement, swales, regenerative stormwater conveyances (RSCs), bioswales

Proposed Changes to NEST Program

- Use thresholds to "screen" influent data
 - If the influent concentration greater than or equal to threshold than corresponding effluent concentration used in effluent EMC calculation
- Assess approved SCMs using thresholds to update current effluent EMCs



	In	f	u	e	nt	Т	N	T	hr	es	ho	d	S
R	4.		I			1		/1	•			^	0

2

Minimum (mg/L)	0.29
12.5 th percentile (mg/L)	0.68
50 th percentile (mg/L)	1.20
87.5 th percentile (mg/L)	1.89
Maximum (mg/L)	4.69

· 제품 2017 · 2017 전 2017 · 201	
Influent TP Thresho	olds
Minimum (mg/L)	0.01
12.5 th percentile (mg/L)	0.05
50 th percentile (mg/L)	0.14
87.5 th percentile (mg/L)	0.28
Maximum (mg/L)	1.76
	Influent TP (mg/L)

Screening Data

Category	Site Name	Date	Pollutant	Influent (mg/L)	Screening	Effluent (mg/L)	Effluent (mg/L)
WP	Bingham Wet Pond	5/19/2013	TN	1.00	Pass	1.09	1.09
WP	Bingham Wet Pond	5/23/2013	TN	1.55	Pass	0.94	0.94
WP	Bingham Wet Pond	6/3/2013	TN	2.37	Pass		
WP	Bingham Wet Pond	6/10/2013	TN	0.56	Fail	0.40	N/A
WP	Bingham Wet Pond	6/13/2013	TN	1.11	Pass	0.49	0.49
WP	Bingham Wet Pond	6/18/2013	TN	1.77	Pass	0.86	0.86
WP	Bingham Wet Pond	6/23/2013	TN	0.74	Pass	0.76	0.76
WP	Bingham Wet Pond	6/24/2013	TN	0.56	Fail	0.57	N/A
WP	Bingham Wet Pond	6/25/2013	TN	0.82	Pass	0.82	0.82
WP	Bingham Wet Pond	6/26/2013	TN	0.72	Pass	0.74	0.74

Want to Learn More?

Stormwater Nitrogen and Phosphorus (SNAP) Tool Workshop

Upcoming Workshops

August 4, 2020

In-Person Training The McKimmon Center 1101 Gorman Street Raleigh, NC 27606

CLICK HERE FOR COMPLETE INFORMATION & TO REGISTER August 11, 2020

Online WebEx Webinar

CLICK HERE FOR COMPLETE INFORMATION & TO REGISTER

Visit: <u>https://www.bae.ncsu.edu/w</u> <u>orkshops-conferences/snap/</u>

Questions?

sewaicko@ncsu.edu 919-515-6803

Gravel Wetlands vs. Stormwater Wetlands

- NC stormwater wetlands (Hathaway and Hunt 2010; Line et al. 2008; Mallin et al. 2012):
 - TN removal: 39 to 59%
 - TP removal: 27 to 68%
 - TSS removal: 58 to 83%
- Gravel wetlands:
 - Wastewater: up to 96% TN and 71% TP removal (Van de Moortel et al. 2009); < 20 mg/L effluent TSS (Reed and Brown 1995)
 - Stormwater: 54% TP and 99% TSS removal (Roseen et al. 2009)

Current Design Guidance- NH

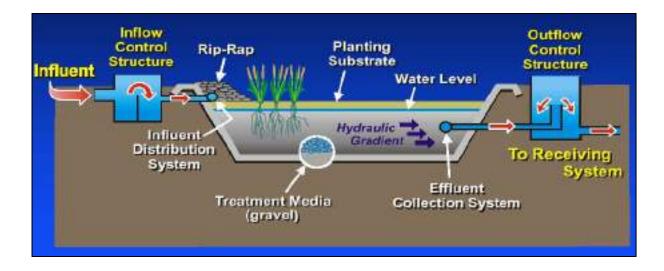
- Pioneer of gravel wetlands for stormwater treatment
- Guidance (UNHSC 2016):
 - Saturated gravel within 4 to 8 in of soil surface
 - Minimum of: 8 in wetland soil, 3 in intermediate aggregate,
 24 in gravel layers
 - Geotextile fabric if in-situ conductivity > 0.03 ft/day
 - Size primary orifice for 24 to 30 hr storage in gravel layer
 - Two cell system where length of each cell is ≥ 15 ft and holds 50% of WQV
 - Pre-treatment basin or forebay that is well-drained

Current Design Guidance- MD

- Guidance (MDE 2012):
 - Appropriate for HSG C or D soils or sites with high groundwater table
 - Must use impermeable liner for HSG A or B soils
 - Wetland soil specifications:

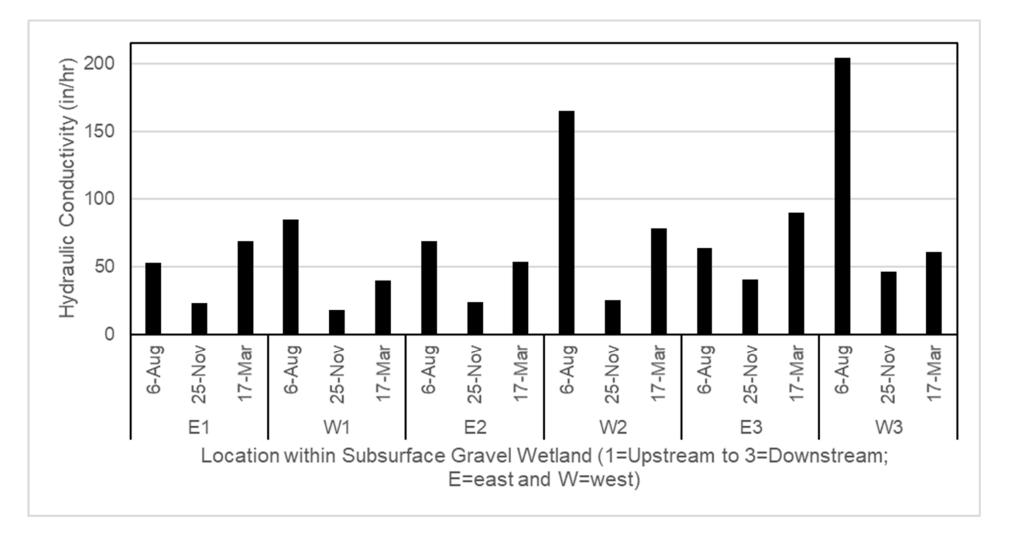
US Standard Sieve Size in/mm	Percent Passing	Percent Passing Testing Tolerances
0.5/12.5	100	± 10.0
#10/2.00	90 - 75	± 5.0
#100/0.15	40-50	± 5.0
#200/0.075	25-50	± 5.0

Current Design Guidance- NJ


- Guidance (NJDEP 2016):
 - Minimum 85% vegetation density
 - Forebay sized to hold minimum 10% WQV and drain within 9 hrs
 - Maximum ponded water at soil surface is 2 ft and drains within 72 hrs
 - Similar depths of soil and aggregate as UNHSC (2016)
 - At least 1 ft separation from SHWT

Current Design Guidance- TN

- Guidance (Knox County 2018):
 - Drainage area \leq 5 ac with \geq 50% impervious cover
 - − SHWT separation \ge 2 ft
 - Pre-treatment required and accounts for WQV storage
 - Minimum of 20 ft wide easement for maintenance



Current Design Guidance Synopsis

- General consensus:
 - Pre-treatment is necessary
 - Permeable in-situ soils should be avoided
 - Saturation within 4 to 8 in of wetland soil surface
 - Temporarily (≤ 72 hrs) pond water at surface
 - Drainage pipes incorporated into cell(s) to encourage infiltration into gravel layer
 - At least 8 in soil, 3 in intermediate aggregate, 2 ft gravel

References- Gravel Wetland

- Dotro, G. (Ed.). (2017). Biological wastewater treatment series (Vol. 7). London, UK: IWA.
- Hathaway, J., & Hunt, W.F. (2010). Evaluation of storm-water wetlands in series in piedmont North Carolina. *Journal of Environmental Engineering, 136*(1), 140-146.
- Knox County. (2008). 4.4.3 Submerged gravel wetland. Retrieved from https://knoxcounty.org/stormwater/...4_4/4_4_3_submerged_gravel_wetland.pdf
- Line, D.E., Jennings, G.D., Shaffer, M.B., Calabria, J., & Hunt, W.F. (2008). Evaluating the effectiveness of two stormwater wetlands in North Carolina. *American Society of Agricultural and Biological Engineers, 51*(2), 521-528.
- Mallin, M.A., McAuliffe, J.A., McIver, M.R., Mayes, D., & Hanson, M.A. (2012). High pollutant removal efficacy of a large constructed wetland leads to receiving stream improvements. *Journal of Environmental Quality, 41*(6), 2046-2055.
- MDE. (2012). *Stormwater design guidance- submerged gravel wetlands.* Retrieved from http://www.mde.state.md.us/programs/Water/StormwaterManagementProgram/SedimentandStormwaterHome/Pa ges/Programs/WaterPrograms/sedimentandstormwater/home/index.aspx
- NJDEP. (2016). 9.13 Subsurface gravel wetlands. Retrieved from http://www.njstormwater.org/bmp_manual2.htm
- Reed, S.C., & Brown, D. (1995). Subsurface flow wetlands: A performance evaluation. *Water Environment Research*, *67*(2), 244-248.
- Roseen, R., Ballestero, T., Houle, J., Avellaneda, P., Briggs, J., Fowler, G., & Wildey, R. (2009). Seasonal performance variations for storm-water management systems in cold climate conditions. *Journal of Environmental Engineering*, *135*(3), 128-137.
- UNHSC. (2016). UNHSC subsurface gravel wetland design specifications. Durham, NH: University of New Hampshire Stormwater Center.
- Van de Moortel, A.M.K., Rousseau, D.P.L., Tack, F.M.G., & De Pauw, N. (2009). A comparative study of surface and subsurface flow constructed wetlands for treatment of combined sewer overflows: A greenhouse experiment. *Ecological Engineering*, *35*(2), 175-183.

