Comparing Water Quality Functional Uplift Outcomes from Common Models and Direct Measurement Using the NC Stream Function Quantification Tool (SQT) : A Case Study

NC Division of Mitigation Services (DMS)

Lin Xu Greg Melia

Stream Function Pyramid Framework

In April 2008, the United States Army Corps of Engineers (USACE) and the United States Environmental Protection Agency (EPA) jointly issued regulations clarifying compensatory mitigation requirements for Department of the Army permits (33 C.F.R. § 332/40 C.F.R. § 230):

"...With this rule, we are encouraging the use of functional and condition assessments to determine the appropriate amount of compensatory mitigation needed to offset authorized impacts, instead of relying primarily on surrogate measures such as acres and linear feet."

The Final Rule stated:

"...In cases where appropriate functional or condition assessment methods or other suitable metrics are available, these methods should be used where practicable to determine how much compensatory mitigation is required (33 C.F.R. § 332.3FR Vol 73, 19633)."

Department of Environmental Quality

Stream Function Pyramid Framework

BIOLOGY » 5 Biodiversity and the life histories of aquatic and riparian life

PHYSICOCHEMICAL »

Temperature and oxygen regulation; processing of organic matter and nutrients

GEOMORPHOLOGY »

3 Transport of wood and sediment to create diverse bed forms and dynamic equilibrium

HYDRAULIC »

Transport of water in the channel, on the floodplain, and through sediments

HYDROLOGY »

Department of Environmental Quality

Nothing Compares

NC Stream Function Quantification Tool (SQT)

- Determine numerical difference between existing stream condition and proposed condition
- Link restoration activities to changes in stream functions
- Estimate restoration potential

Department of Environmental Quality

Nothing Compares

Functional Category	Function-Based Parameters	Measurement Method	
Under Leave	Catchment Hydrology	Curve Number	
		Curve Number	
Hydrology	Reach Runoff	Concentrated Flow Points	
		Soil Compaction	
Hydraulics	Floodplain Connectivity	Bank Height Ratio	
		Entrenchment Ratio	
		LWD Index	
	Large Woody Debris	# Pieces	
		Erosion Rate (ft/yr)	
	Lateral Stability	Dominant BEHI/NBS	
	-	Percent Streambank Erosion (%)	
		Left Canopy Coverage (%)	
		Right Canopy Coverage (%)	
		Left Riparian Vegetation Width (ft)	
	Riparian Vegetation	Right Riparian Vegetation Width (ft)	
Geomorphology		Left Basal Area (sq.ft/acre)	
		Right Basal Area (sq.ft/acre)	
		Left Stem Density (stems/acre)	
		Right Stem Density (stems/acre)	
		Size Class Pebble Count Analyzer	
	Bed Material Characterization	(p-value)	
		Pool Spacing Ratio	
		Pool Depth Ratio	
	Bed Form Diversity	Percent Riffle	
		Aggradation Ratio	
	Sinuosity	Plan Form	
	Temperature	Temperature (°F)	
Physicochemical	Bacteria	Fecal Coliform (Cfu/100 ml)	
		Leaf Litter Processing Rate	
	Organic Carbon	Percent Shredders	
	Nitrogen	Monitoring (mg/L)	
	Phosphorus	Monitoring (mg/L)	
	Macros	Biotic Index	
Biology		EPT Taxa Present	
	Fish	North Carolina Index of Biotic Integrit	

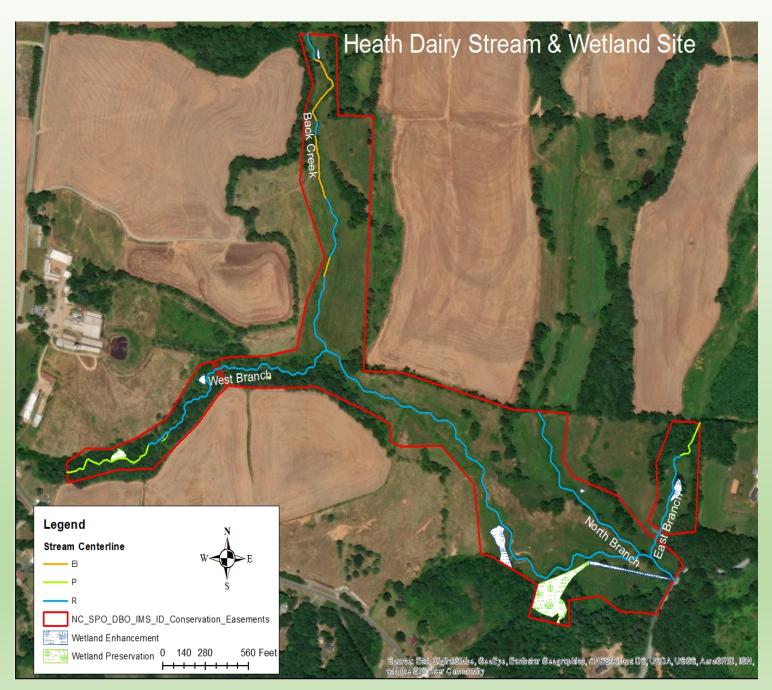
Physiochemical Function

The nutrient (nitrogen and phosphorus) parameter is included in both the BMP Routine and the reach condition assessments in SQT.

SQT suggests to use the Jordan/Falls Lake Stormwater Nutrient Load Accounting Tool (JFSLAT), if a BMP is being installed.

Four common water quality models are selected and results of model runs are compared with direct in-stream monitoring results for a DMS mitigation project.

Heath Dairy Road Restoration Site


Cape Fear River Basin

Provides 7,791 LF of stream restoration, 960 LF of enhancement and 636 LF of preservation

Construction completed in 2013, and current in year 4 monitoring

NCSU Water Group conducted pre and post restoration monitoring

Water Quality Models

Two Export Coefficient Models

- DMS tool for Quantifying Benefits to Water Quality from Livestock Exclusion and Riparian Buffer Establishment for Stream Restoration (DMS)
- Total Nitrogen (TN) and Total Phosphorus Loading Calculation Worksheet Piedmont of the Tar-Pamlico River Basin (DWR)

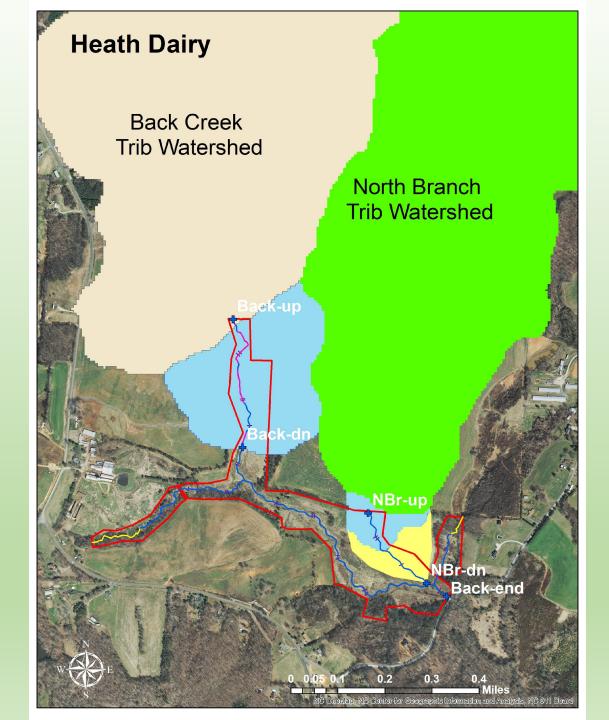
Two Storm Water Based Models

- Jordan/Fall Lake Stormwater Nutrient Load Accounting Tool (JFSLAT) (DWR & NCSU BAE)
- Stormwater Nutrient Accounting Tools (SNAP) (DWR)

Department of Environmental Quality

Nothing Compares

Back Creek Reach – Heath Dairy


- Catchment size 1.08 sq mi, buffer planted area – 6 ac, and lateral drainage area – 52 ac
- Predominant agricultural land use (55%, mostly pasture)

North Branch Reach – Heath Dairy

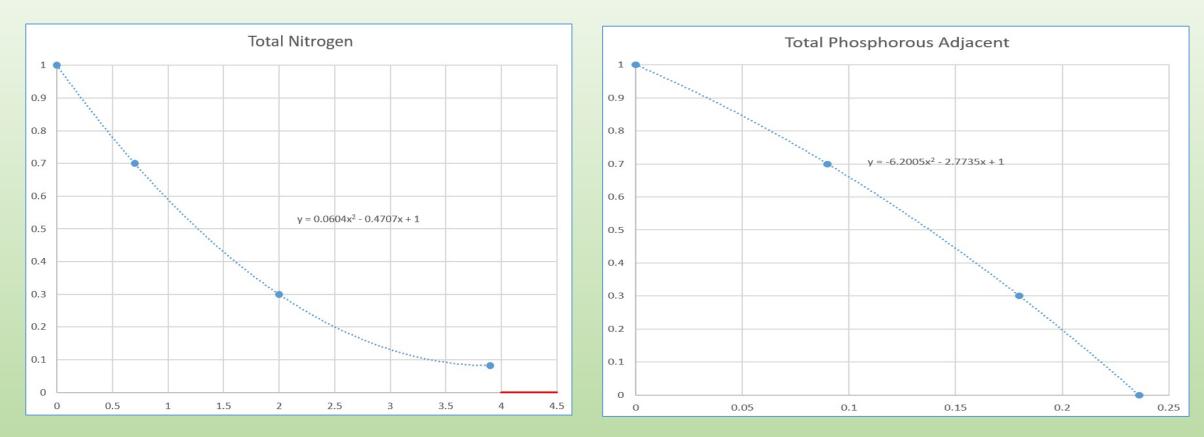
- Catchment size 1.14 sq mi, buffer planted area – 6.04 ac, and lateral drainage area – 17 ac
- Predominant agricultural land use (60%, mostly pasture)

Department of Environmental Quality

Back Creek Reach - Water Quality Models Results and Monitoring Data

	TN (mg/L) Pre-restoration	TN (mg/L) Post-restoration	% Change	TP (mg/L) Pre-restoration	TP (mg/L) Post-restoration	% Change
Tar-Pam Nutrient Loading Calculation Worksheet	1.89	1.83	3.2	0.48	0.46	4.2
JFLSAT	2.07	2.02	2.4	0.55	0.54	1.8
SNAP	1.71	1.63	4.7	0.34	0.33	2.9
Monitoring Data	5.59	2.29	59.0	1.97	0.48	75.6

Nothing Compares


North Branch Reach - Water Quality Models Results and Monitoring Data

	TN (mg/L) Pre-restoration	TN (mg/L) Post-restoration	% Change	TP (mg/L) Pre-restoration	TP (mg/L) Post-restoration	% Change
Tar-Pam Nutrient Loading Calculation Worksheet	1.76	1.74	1.1	0.45	0.45	0
JFLSAT	1.74	1.73	0.5	0.44	0.44	0
SNAP	1.69	1.68	0.5	0.31	0.31	0
Monitoring Data	5.51	3.39	38.5	1.81	0.80	55.8

Nothing Compares

SQT Application – BMP Routine

Department of Environmental Quality

Mothing Compares

Not Functioning (NF): 0.0 - 0.29

Functioning at Risk (FAR): 0.3 - 0.69

Functioning (F): 0.7 - 1.0

SQT Physicochemical Function Application Back Creek Reach

		TN Scores	TP Scores	Overall Score
Tar-Pam Nutrient Loading Calculation Worksheet	Pre-restoration	0.33	0	0.16
	Post-restoration	0.34	0	0.17
JFLSAT	Pre-restoration	0.29	0	0.14
	Post-restoration	0.30	0	0.15
SNAP	Pre-restoration	0.37	0	0.19
	Post-restoration	0.39	0	0.20
Monitoring Data	Pre-restoration	0	0	0
	Post-restoration	0.24	0	0.12

Department of Environmental Quality

Not Functioning (NF): 0.0 - 0.29

Functioning at Risk (FAR): 0.3 - 0.69

Functioning (F): 0.7 - 1.0

SQT Physicochemical Function Application North Branch Reach

		TN Scores	TP Scores	Overall Score
Tar-Pam Nutrient Loading Calculation Worksheet	Pre-restoration	0.36	0	0.18
	Post-restoration	0.36	0	0.18
JFLSAT	Pre-restoration	0.36	0	0.18
	Post-restoration	0.37	0	0.19
SNAP	Pre-restoration	0.38	0	0.19
	Post-restoration	0.38	0	0.19
Monitoring Data	Pre-restoration	0	0	0
	Post-restoration	0.10	0	0.05

Department of Environmental Quality

Not Functioning (NF): 0.0 - 0.29

Functioning at Risk (FAR): 0.3 - 0.69

Functioning (F): 0.7 - 1.0

Conclusions

Model Limitations – Catchment Size, Nutrient EMC, Nutrient Removal Mechanism SQT Limitation – Reference Condition, no Change / Improvement

Going Forward

Testing Additional Models, like EPA's STEP - L

Questions

Department of Environmental Quality

