

Less is More: Sustainable Strategies for Stream Restoration Design and Construction

ecological restoration

Presented by: Colin McGill and Amy Reed

Less is More

- Always be sustainable (ABS)
 - Site Assessment
 - Design
 - Construction
- Use design constraints as a tactic for a sustainable project
- Design for the long now
- Ecosystems services and trophic cascades

More or Less?

- Bed and Bank Erosion
- Meander Migration
- Low/No Floodplain Connectivity

Existing Conditions

Project Goals

- Stabilize
- Maximum Habitat
- Design Constraint

"When forced to work within a strict framework the imagination is taxed to its utmost – and will produce its richest ideas. Given total freedom the work is likely to sprawl."

— T.S. Eliot

Identify opportunities for reuse of materials at initial site analysis

1.Wood/brush/trees/root wads
2. Rock/cobble/gravel
3. Topsoil
4. Sod/grass
5. Transplants/live stakes
6. Seeds – peat

What's on site?

FIRST MINE STREAM RESTORATION

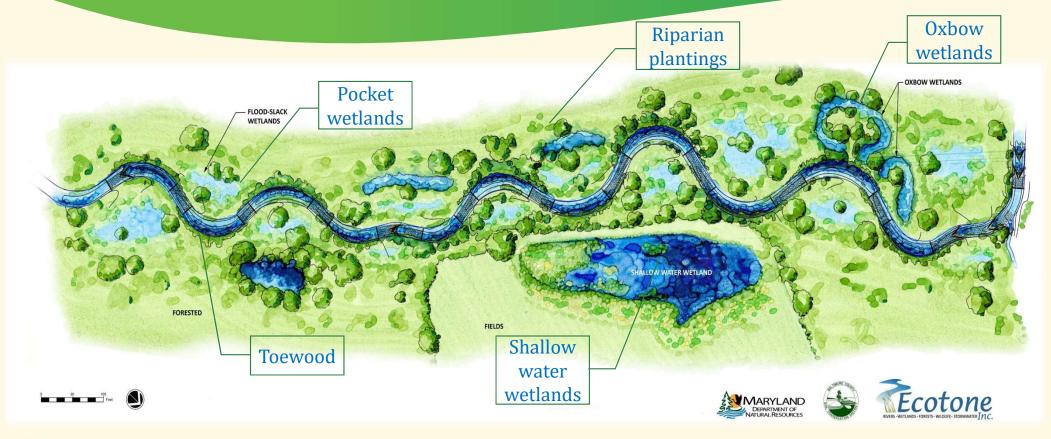
DESIGN SUSTAINABILITY REVIEW CHECKLIST Mandatory Sustainability and Constructability Review at 60% design

INITIAL SITE INVENTORY

- ✓ Rock/Gravel source Wide variety of gravel size/plenty to salvage d84 \approx 30 mm
- Are soil borings necessary/beneficial? Yes would be beneficial
- Wetland peat layer
 - Beneficial to plot profile? potential wetlands present to be delineated
- ✓ Wetland sod/upland sod sources quantify majority of site is completely wooded/source of upland sod
- ✓ Sod grow areas quantify large adjacent fields/discussion with the landowner
- ✓ Live stake source quantify ≈120 trees (via tree survey)surrounded by trees to be used as potential live stake source
- ✓ Root wads/logs quantify ≈120 trees (via tree survey) in construction area/adequate amount of quality tress
- ✓ Inventory summary spreadsheet completed

DESIGN CONSIDERATIONS

- ✓ Utilize inventory spreadsheet to maximize use of on-site materials
- ✓ Vegetation/wood vs. Rock a lot of wood
 - Maximize use of vegetation/wood and keep submerged
 - If using Rock, justify No rock to be used as main structures
- ✓ Are there opportunities to recycle/reuse materials? Yes-trees can be used for structures and adequate riffle material
- ✓ Sun vs. shade, aspect consider for bioengineering plan Is currently forested/and will still have some tree cover
- ✓ Furnished materials available locally Majority of material can be salvaged on site
- ✓ Reduce Transport Costs
 - o Haul Off Reduced by using on-site materials and spoils areas -little/no haul off abundance of on-site material
 - o Haul On Reduced by balancing cut/fill -adjacent fields for balance

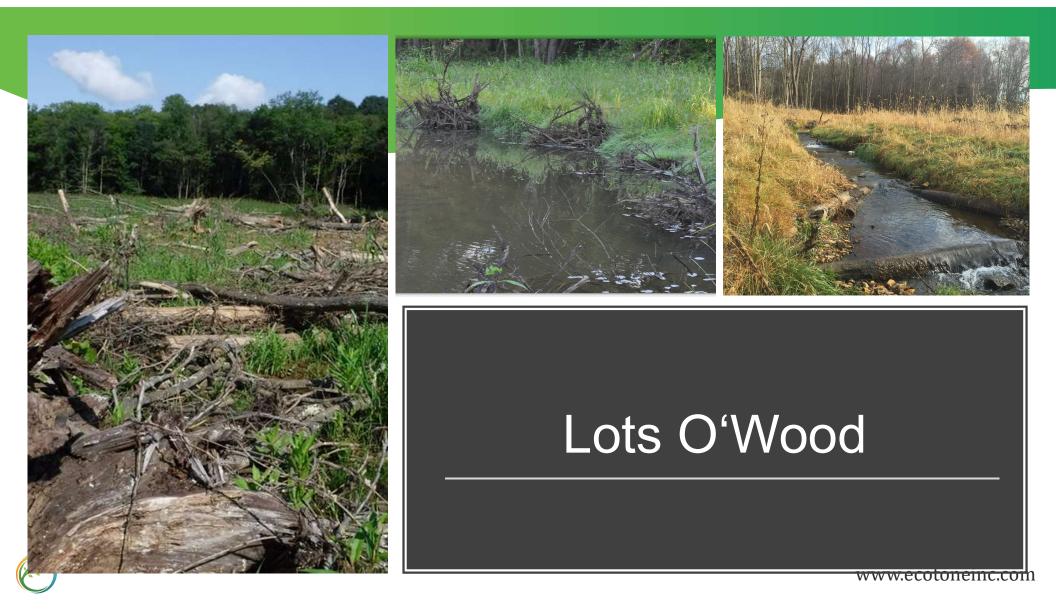

CONSTRUCTABILITY CONSIDERATIONS

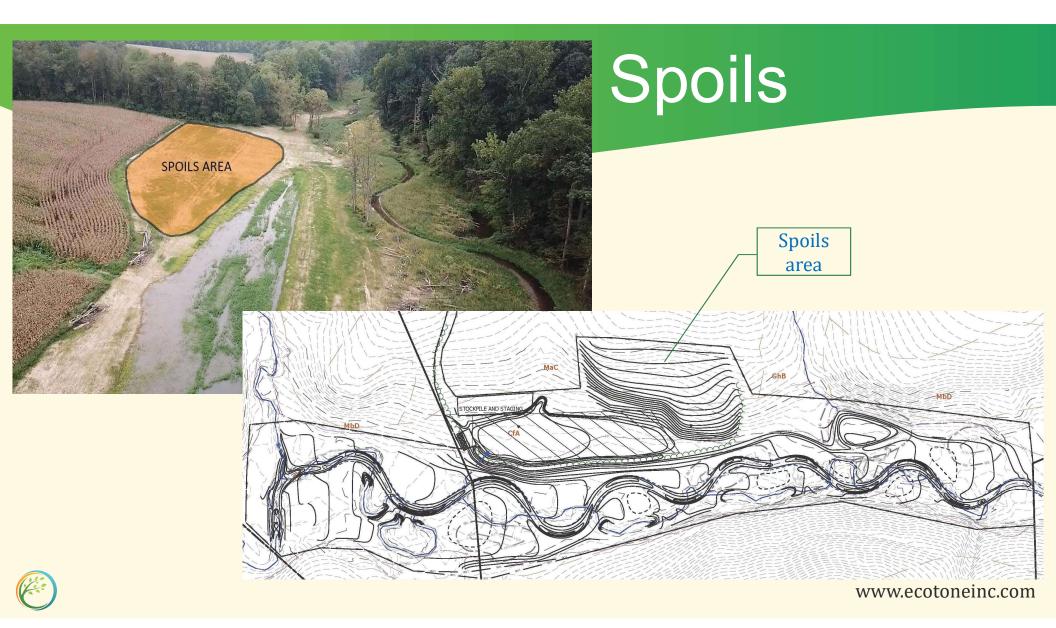
- ✓ Stockpiles
 - Short Dirt Are locations of spoils areas adequate Yes-large adjacent fields, discuss with landowner if there is anywhere else they may want soil
 - Is the stockpile area large enough for construction needs Yes
- ✓ Is the LOD adequate for efficient construction Yes no restrictions
- ✓ Does the design allow for creativity/flexibility during construction Yes no restrictions
- ✓ Reviewed by Director of Construction at 60% design

FOR PLANS

- 🖌 Description of project in 20 years function, appearance, sediment transport condition (aggrading/degrading)
- ✓ Materials list with salvaged and furnished materials completed at 90%, need additional construction review
- Local sources of material identified on plans with contact information hopefully not required, hopeful to use all materials from on-site

Design Approach




Free

Soft rush	Juncus effusus	20%	FACW
Straw Colored Flat Sedge	Carex straminea	12%	OBL
Canada rush	Junave canadant s	7%	OBL
Bamyard grass	E hine Ic crus all	7%	FACU
Cattail	T, ha / life. 'a	5%	OBL
Tussock sedge	Carex stricta	5%	OBL
Lurid Sedge	Carex luridia	3%	OBL
Square stem Money flower	Mimulus ringus	<2%	FACW
Walter Millet	Echinochla walteri	<2%	FACW
Pennsylvania smartweed	Polygonum pensylvanicum	<2%	FACW
Rice Cutgrass	Leersia oryzoides	<2%	OBL
Slender St. Johns Wort	Hypericum mutilum	<2%	FACW
Eastern burreed	Sparganium americanum	<2%	OBL
Jewelweed	Impatiens capensis	<2%	FACW
Blunt Spike rush	Eleocharus obtusa	<2%	OBL
American Water horehound	Lycopus americanus	<2%	OBL
American Water Wort	Elatine americana	<2%	OBL
Seedbox	Ludwigia paulustris	<2%	OBL
Beaked spike rush	Eleocharis rostellata	<2%	OBL
False Nettle	Bohemaria cylindrica	<2%	OBL
Boneset	Eupatorium perfoliatum	<2%	FACW
Soft Stem Bulrush	Scirpus validus	<2%	OBL
Woolgrass	Scirpus cyperinus	<2%	FACW
White Clover	Trifolum repens	<2%	FACU
Duck Potato	Saggittaria latifolia	<2%	OBL
Swamp milkweed	Asclepias incarnata	<2%	OBL
Littleleaf Goldenrod	Solidago graminacea	<2%	FAC
White Aster	Aster vimminuem	<2%	FAC
Arrow arum	Peltandra virginica	<2%	OBL
Black Eyed Susan	Rudbeckia hirta	<2%	FACU
Arthraxon	Arthraxon hispidus	<2%	NI
Moming Glory	Ipomea eriocarpa	<2%	FACU
Goldenrod	Solidago spp	<2%	FACU
Speedwell	Veronica anagallis-aquatica	<2%	OBL

Savings of \$64,500!

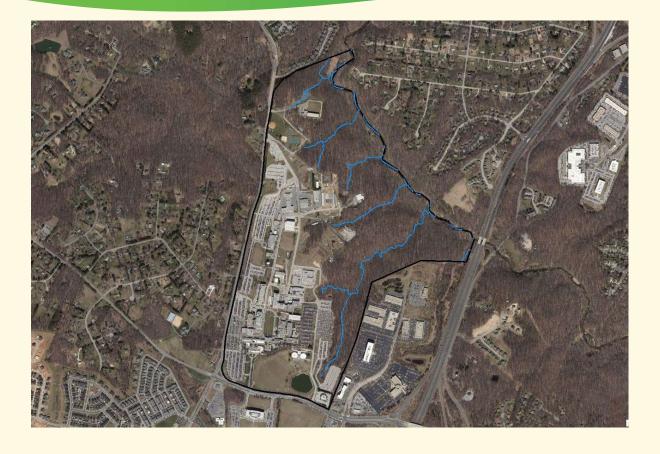
Material	Cost to Import/Export
Riffle Material	\$15,000
Log Vanes	\$2,500
Toewood	\$10,000
Sifted Topsoil	\$12,000
Spoil Haul Off	\$25,000+
	\$64,500+

Plus 5,378 miles of hauling

& Roughly 900 gallons of diesel fuel not burned

Design + Construction = \$202/LF

What!?! That's almost to San Francisco and back!!


Urban Less is More?

Urban Less is More?

Tributaries to Middle Patuxent River

How to incorporate "Less is More?"

What materials are onsite?

Tributaries to Middle Patuxent River

Salvaged Step Pools

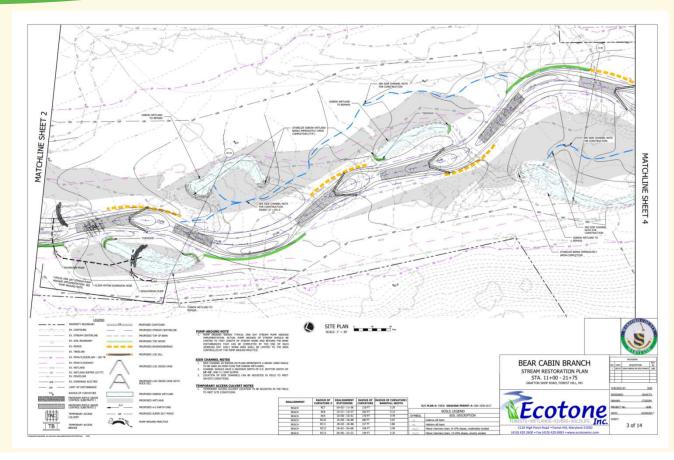
www.ecotoneinc.com

Was Less is More possible here?

Design + Construction = \$525/LF

Looking Forward

Bear Cabin Branch

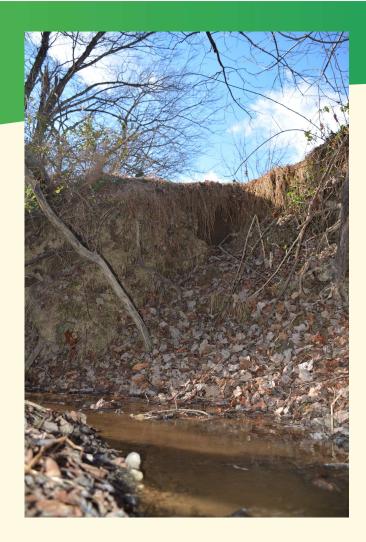

- Legacy sediment from mill dam
- 20% impervious watershed
- County property

Getting to Stage Zero

- Oxbow wetlands
- Side channels
- Low, wet floodplain
- Roughness

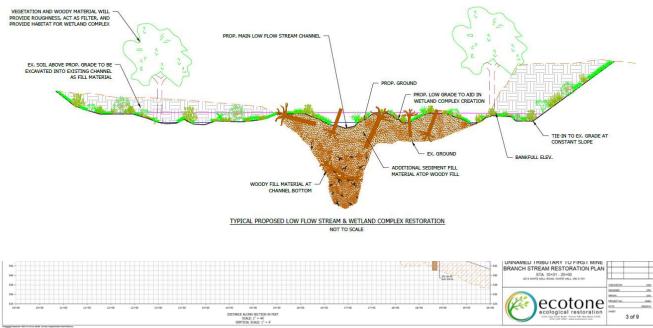
Alluvial channels have 9 degrees of freedom*

- Width
- Mean depth
- Maximum depth
- Bed grain size
- Bed gradation
- Centerline wavelength
- Centerline amplitude
- Meander wavelength
- Meander radius of curvature



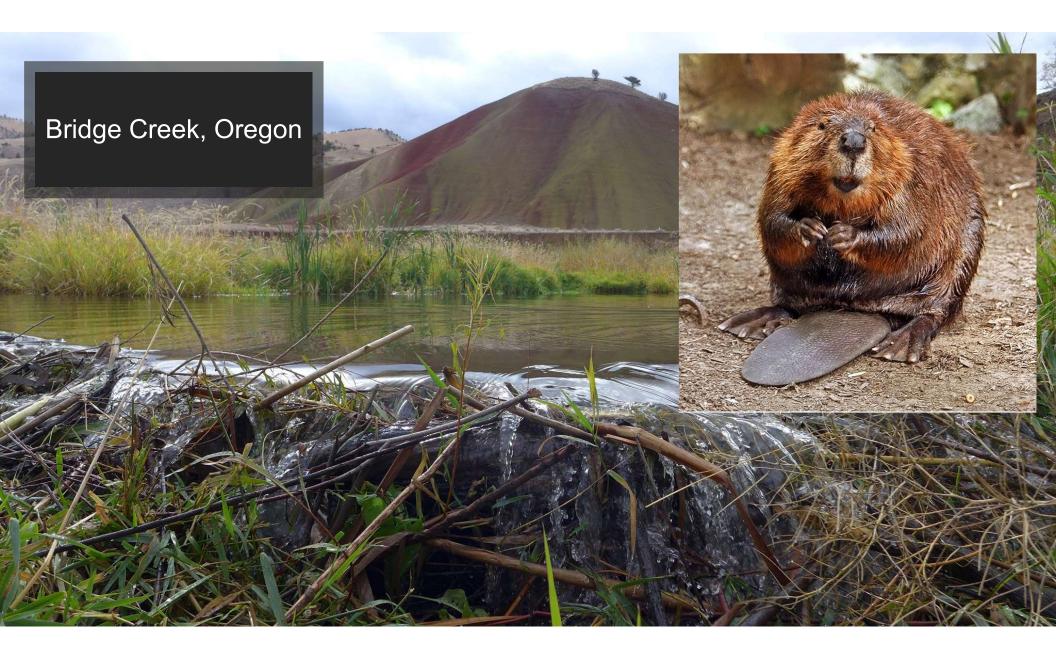
www.ecotoneinc.com

*Richard Hey (1997) Stable River Morphology, in 'Applied Fluvial Geomorphology for River Engineering and Management' Thorne, Hey, and Newson (eds)



Design approach

- Fill channel
- Incorporate clay blocks
- Let the water do the work
- Lots of wood


STAGE ZERO

Design + Construction = \$217/LF

ecological restoration

THINK LIKE A MOUNTAIN