

Aligning Policy, Practice, and Agencies: Moving From Ratios to Function Lift

2004 TN Stream Mitigation Guidelines

Ratio Based

- Language focuses on projects that re-establish maximum biological, chemical, and physical integrity to resource
- Describes activity based crediting-pattern, profile, and dimension
- Narrative Criteria
 - Does not require baseline information
 - Subjective
 - Creates crediting drift
 - TDEC uses to also inform on ratios for debits

2012 Draft Stream Mitigation Guidelines

Realized deficiencies in the 2004 mitigation guidelines; qualitative/subjective and crediting drift

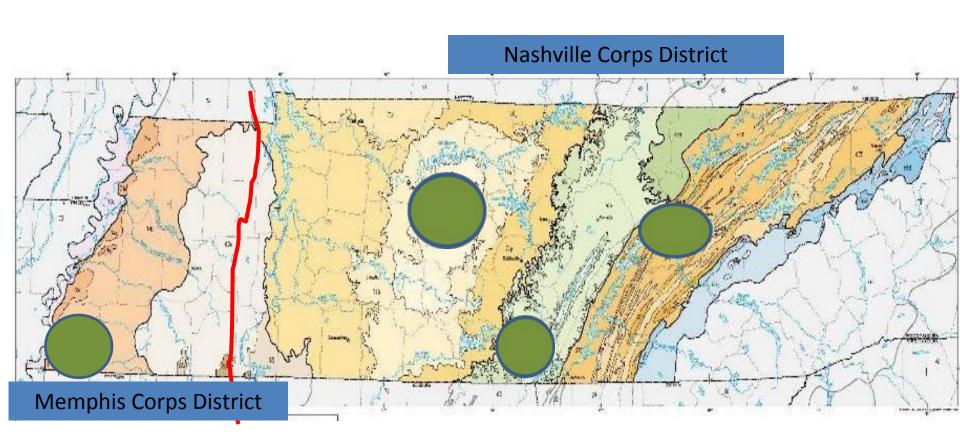
- Wanted to be consistent with USACE requirements
- Wanted to align state guidelines with the 2008 Final Rule to the extent practical for TN
- Wanted to establish functional lift
- Move away from linear footage/ratio based system

Shortcomings

- Received significant comment on efficacy of functional assessment parameters and methods
- Division lacked capacity to create a robust functional assessment

TDEC Steps to Policy Change (2013)

- ID problem- uncertainty, credit drift, does not meet federal rule
- Engage our stakeholders
- Evaluate potential assessment methods
- Establish parallel pathways
 - Education and outreach
 - Incremental and iterative document development
 - Data gathering
 - Tool development
 - Tools to Policy



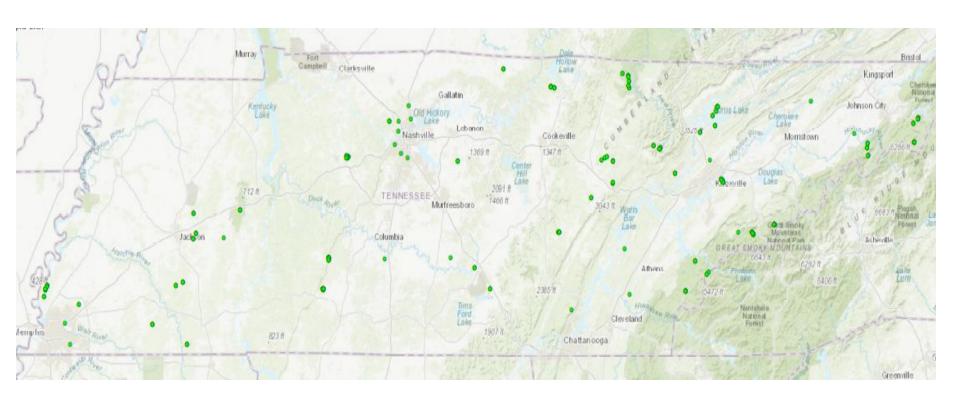
Corps Districts in Tennessee

Broad-based Collaboration 2014

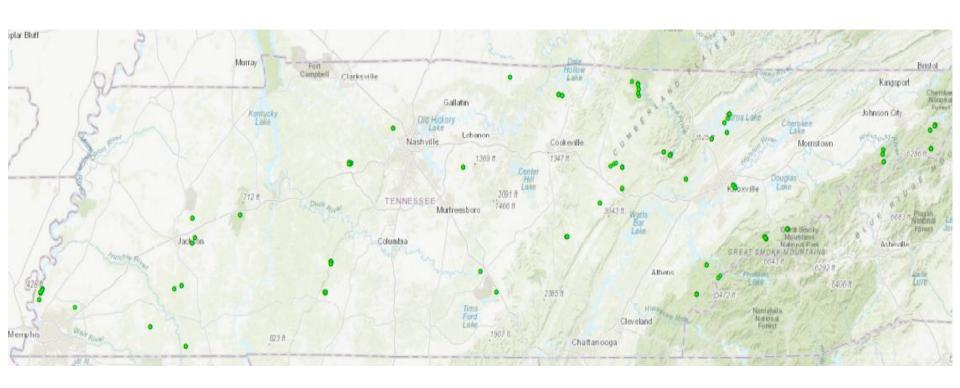
- Stakeholdering
- Provide opportunity for wide ranging feedback
- NGOs
- Consultants
- All IRT agencies
- EPA
- Universities
- MS4s
- Citizens
- Important to have transparent, predictable, and repeatable processes for credits AND debits

Establishing Pathway (2014)

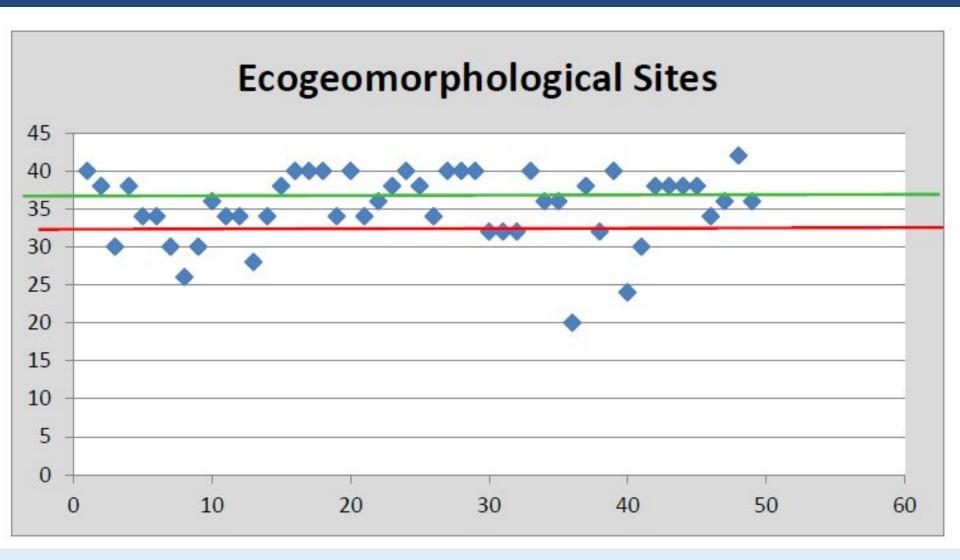
- Measurable. Transparent. Predictable. Repeatable
- Partner with USACE and IRT to develop/adopt functional assessment guidance tools
- Based on known stream functions
- Inherent relationships in stream channel metrics
- Incorporate TDEC biological and water quality data
- Regionalize as information becomes available


Data gathering and analysis (2015)

- Ecoregion based
- Regional Curves
- Bedform Diversity
- Large Woody Debris
- Riparian vegetation
- Biology
- Water Quality
- Ecogeomorphological Reference Sites
- Review 35 established compensatory mitigation sites with the TN SQT
- Riparian vegetation species composition



All Sites (115)

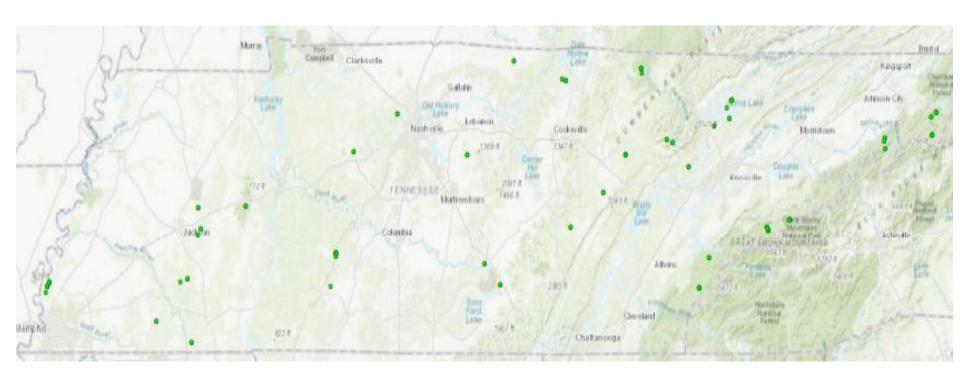


GeoMorph Sites (92)

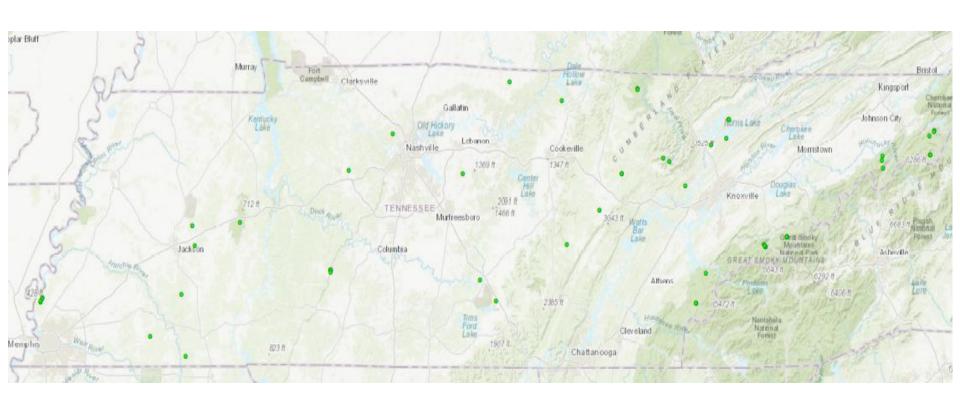
49 geomorph sites assessed for biology and WQ; 6 not supporting (FAR/NF), 43 fully supporting; 11 (high FAR), 32 functioning are fully

Broad Based Collaboration

- Mitigation Assessment Team (MAT)
 - Internal working group of IRT
 - TDEC, USACE, & EPA
- MAT broken into parameter driven mini teams
 - Review and analyze existing data
 - Research and gather new data
 - Incorporate TN specific data into performance curves from Stream Quantification Tool
- Stream Design Review Group
- All members of IRT



TN SQT


	Catchment Hydrology	Watershed Land Use Runoff Score		
Hydrology	Reach Runoff	Stormwater Infiltration		
	Reacti Rution	Concentrated Flow Points		
Hydraulics	Floodplain Connectivity	Bank Height Ratio		
riyurauncs	1 loouplain connectivity	Entrenchment Ratio		
	Large Woody Debris	Large Woody Debris Index		
	targe woody bears	# Pieces		
		Erosion Rate (ft/yr)		
	Lateral Migration	Dominant BEHI/NBS		
	cateral Wilgration	Percent Streambank Erosion (%)		
		Percent Armoring (%)		
		Left - Average DBH		
		Right - Average DBH (in)		
		Left - Buffer Width (feet)		
		Right - Buffer Width (feet)		
Geomorphology	Riparian Vegetation	Left - Tree Density (#/acre)		
Geomorphology	Riparian vegetation	Right - Tree Density (#/acre)		
		Left - Native Herbaceous Cover (%)		
		Right - Native Herbaceous Cover (%)		
		Left - Native Shrub Cover (%)		
		Right - Native Shrub Cover (%)		
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)		
		Pool Spacing Ratio		
	Bed Form Diversity	Pool Depth Ratio		
	Ded Form Diversity	Percent Riffle (%)		
		Aggradation Ratio		
	Plan Form	Sinuosity		
	Bacteria	E. Coli (Cfu/100 mL)		
Physicochemical	Organic Enrichment	Percent Nutrient Tolerant Macroinvertebrates (%)		
rifysicochemical	Nitrogen	Nitrate-Nitrite (mg/L)		
	Phosphorus	Total Phosphorus (mg/L)		
		Tennessee Macroinvertebrate Index		
	Macroinvertebrates	Percent Clingers (%)		
Biology	Macroniver tebrates	Percent EPT - Cheumatopsyche (%)		
biology		Percent Oligochaeta and Chironomidae (%)		
	Fish	Native Fish Score Index		

Biology and WQ Sampling Sites (75)

EcoMorph Sites (63)

Bridging the Gap: tools into policy

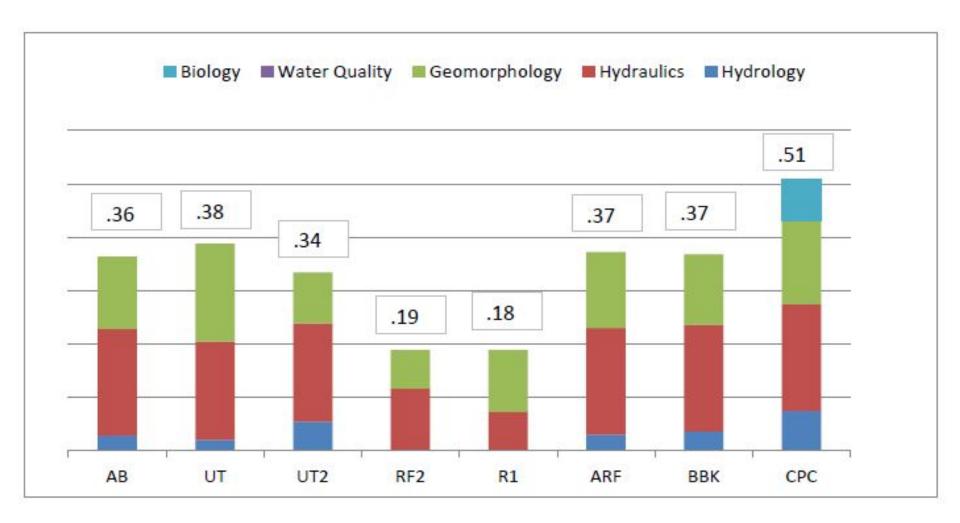
- Crediting is easy-lift is lift
- Debits
- Transitioning
- Potential to change currency AND reduce mitigation requirement
- No net loss

Projects in the Pipeline

GEORGIA ON MY MIND

Reach	Existing Length	Proposed Length	Extra LF	Base Ratio	Ratio for Extra LF	Total Credits for Reach	Proposed FF - Existing FF	Functional Lift Score
AB	1316	1713	397	1.5	1.1	1238.2	677	0.36
ВВ	1631	2220	589	1.5	1.1	1622.8	904	0.37
EB	1834	2598	764	1.5	1.1	1917.2	1032	0.35
ARB	1347	1866	519	1.5	1.1	1369.8	763	0.37
CPC	6272	7215	943	1.5	1.1	5038.6	3812	0.51
FC	986	1340	354	1.5	1.1	979.2	427	0.25
7.0	1997	07	07		TOTALS	12166	7615	
							AVERAGE	0.36833333

FORKS AND SPOONS


Reach	Existing Length	Proposed Length	Extra LF	Base Ratio	Ratio for Extra LF	Total Credits for Reach	Proposed FF - Existing FF	Functional Lift Score
UT1	2509	3266	757	1.5	1.1	2360.8	1309	0.38
UT2	492	841	349	1.5	1.1	645.3	321	0.34
	35	Ø 1111	30 3		TOTALS	2361	1309	1
					F01277700-0	0 5/2000 91	AVERAGE	0.36

RAY OF SUNSHINE

Reach	Existing Length	Proposed Length	Extra LF	Base Ratio	Ratio for Extra LF	Total Credits for Reach	Proposed FF - Existing FF	Functional Lift Score
R1	5223	5223	0	3	1.1	1741.0	940	ERRORS
R2	1887	1887	0	4	1.1	471.8	245	ERRORS
R3	2666	2666	0	3	1.1	888.7	720	0.27
R4	1025	1365	340	3	1.1	650.8	423	0.29
R5	960	1260	300	3	1.1	592.7	256	0.38
R6	2932	3628	696	3	1.1	1610.1	718	ERRORS
171-000	Maria Maria	0004000	A COVINCE OF THE	0. 00	TOTALS	5955	3302	A BOOLDANIES
							AVERAGE	0.31333333

Proposed Lift

TN Debit Tool

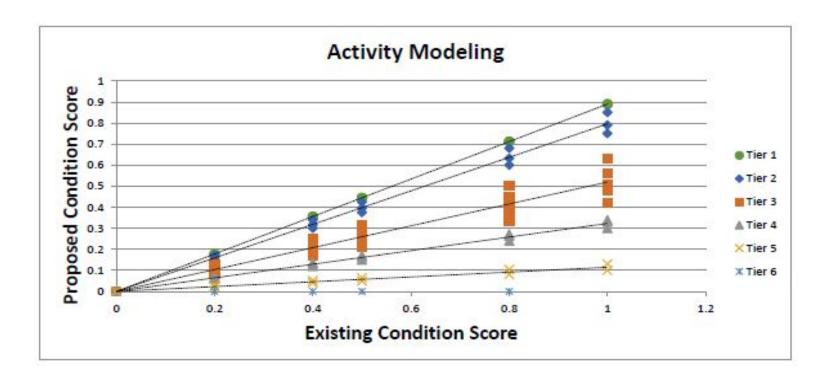
- Debits will decrease
 - Proposed state rules establish existing condition
- Not all impacts are the same
- TDEC can't assess every impact site pre-impact
 - Standard Existing Condition
 Score (0.80)
 - Lower limit of ECS (0.40)

- Credits and debits need to be in the same currency
- Reporting and performance standards for all project types
- Biological assessments

<u>Tier 5 - This tier represents activities that result in a significant functional loss to</u> most if not all stream resource values. Examples include but are not limited to:

- Pipe or 4-Sided Box Culvert: These pipes encapsulate the stream for greater than 200 linear feet either cumulatively or individually. Includes wingwalls, any energy dissipation device, u-shaped endwalls. All components attached to the pipe structure itself. Does not include riprap. Riprap at the upstream or downstream section of a pipe is calculated using the bed and/or bank armoring descriptions by tier. These structures may affect the channel at the crossing approaches when the activity requires reshaping this zone making the stream wider and potentially deeper. This activity eliminate most stream resource values and functions including riparian vegetation, macroinvertebrates and fish communities, water quality, floodplain connectivity, natural bedforms and lateral migration and eliminates hydrologic contributions from reach runoff.
- Channelization or Full Channel Armoring: Affects both banks for a distance of 200 feet or greater. Channels are lined along the bed and banks with concrete, grouted riprap, or concrete articulated mats. These streams are incised and alterations most likely include channel bank and potentially bed reshaping. The bed material is not suitable substrate for aquatic colonization and these channels will most likely be maintained in their current state. Vegetation in the near buffer zone is restricted and routinely eliminated.

<u>Tier 6</u> – This tier represents 100% functional loss of a stream's resource value.


Tier	Functional Loss Description
0	No appreciable permanent loss of resource value
1	Minimal loss of resource value (stream function). Impacts to reach runoff, lateral
	migration and/or riparian vegetation. No appreciable impact to water quality, and
	macroinvertebrate and fish communities.
2	Partial loss of resource value (stream function). Impacts to reach runoff, lateral
	migration, bed form diversity, and riparian vegetation. No appreciable impact to water
	quality, and macroinvertebrate and fish communities.
3	Permanent loss of some of resource value (stream function). Impacts to reach runoff,
	floodplain connectivity, lateral migration, riparian vegetation, and bed form diversity.
	May also include impacts to large woody debris. Minor impacts to water quality and
	moderate impacts to macroinvertebrate and fish communities.
4	Permanent loss of most of resource value (stream function). Impacts to reach runoff,
	floodplain connectivity, lateral migration, riparian vegetation, , and bed form diversity.
	May also include impacts to plan form and/or large woody debris. Significant impacts to
	water quality and macroinvertebrate and fish communities.
5	Permanent loss of most of resource value (stream function). Removal of all aquatic
	functions except for hydrology.
6	Total and permanent loss of all resource value (stream function). Complete elimination of
	all stream functions. Total loss of existing and potential function.

Impact Severity Tiers	Impact Factors	Percent Functional Loss
Tier 0	1.00	0%
Tier 1	0.89	11%
Tier 2	0.8	20%
Tier 3	0.52	48%
Tier 4	0.32	68%
Tier 5	0.12	80%
Tier 6	0.00	100%
		-

Proposed Impact Factors and Activity Modeling:

graph represents combined data from modeling individual activities and the impact these actions have on stream resources. Table establishes tier, functional loss and the impact factor used to determine debits.

The Impact Factors were developed from linear regression equations of modeled impact scenarios using a simplified version of the SQT. Each impact type was described in detail and evaluated for stream resource values loss by the proposed activities. Using a simplified SQT, an individual impact factor was developed for each impact type. These types were grouped based on % functional loss (in clusters) and graphed in "tiers". A trendline was drawn and the slope of that line became the combined impact factor representing all activities within a given tier.

Name:	
Date:	

TN SQT DEBIT TOOL v1.0

DRAFT DELIBERATIVE, NOT TO BE RELEASED OUTSIDE THE AGENCY

Users Input Values

Users select values from a pull-down menu

Stream	Reach ID	Existing Length	ECS	Proposed Length	Impact Severity Tier	PCS	Change in FF
STR-1	Box culvert	26	8.0	26	Tier 5	0.10	-18.2
	riprap	65	0.8	65	Tier 3	0.42	-24.7
STR-2	Box culvert	142	0.8	142	Tier 5	0.10	-99.4
	riprap	42	0.8	42	Tier 3	0.42	-16.0
STR-3	Fill	221	0.8	221	Tier 6	0.00	-176.8
					Tier 6	0.00	0.0
					Tier 5	0.00	0.0
					Tier 4	0.00	0.0
					Tier 5	0.00	0.0
					Tier 5	0.00	0.0
					Tier 0	0.00	0.0
					Tier 0	0.00	0.0
					Tier 1	0.00	0.0
					Tier 2	0.00	0.0
					Tier 3	0.00	0.0
					Tier 4	0.00	0.0
					Tier 5	0.00	0.0
					Tier 6	0.00	0.0
					Tier 5	0.00	0.0
2	*	× ×		*	Tier 4	0.00	0.0
:		8			Tier 3	0.00	0.0
					Tier 2	0.00	0.0
					Tier 1	0.00	0.0
					Tier 0	0.00	0.0
					Tier 1	0.00	0.0
					Tier 2	0.00	0.0

Total Functional Loss:

-335.1 FF

Name:
Date:

TN SQT DEBIT TOOL v1.0

DRAFT DELIBERATIVE,
NOT TO BE RELEASED OUTSIDE THE AGENCY

Project ID:		
Project ID.		

COLUMN TO SERVICE		2000000
COFC	nout W	altine
וכושכנ	nput Va	aiues

Users select values from a pull-down menu

Stream	Reach ID	Existing Length	ECS	Proposed Length	Impact Severity Tier	PCS	Change in FF
STR-1	Box culvert	26	0.4	26	Tier 5	0.05	-9.1
	riprap	65	0.4	65	Tier 3	0.21	-12.4
STR-2	Box culvert	142	0.4	142	Tier 5	0.05	-49.7
	riprap	42	0.4	42	Tier 3	0.21	-8.0
STR-3	Fill	221	0.4	221	Tier 6	0.00	-88.4
		i i			Tier 6	0.00	0.0
					Tier 5	0.00	0.0
					Tier 4	0.00	0.0
					Tier 5	0.00	0.0
					Tier 5	0.00	0.0
					Tier 0	0.00	0.0
					Tier 0	0.00	0.0
					Tier 1	0.00	0.0
					Tier 2	0.00	0.0
					Tier 3	0.00	0.0
					Tier 4	0.00	0.0
		**************************************		3	Tier 5	0.00	0.0
	8			-2	Tier 6	0.00	0.0
				- 2	Tier 5	0.00	0.0
					Tier 4	0.00	0.0
					Tier 3	0.00	0.0
					Tier 2	0.00	0.0
		1			Tier 1	0.00	0.0
					Tier 0	0.00	0.0
					Tier 1	0.00	0.0
					Tier 2	0.00	0.0

Total Functional Loss:

-167.5 FF

Comparison of Permitted to Proposed

DEBITS								
2004 Standard	Draft 2018							
	ECS 0.80	ECS 0.50	ECS 0.40					
1140	588.64	367.98	293.32					
461	325.8	204	162.9					
2285	1643.3	1031.68	821.75					
310	240	150	120					
496	294.5	184.5	147.2					

Moving to a Draft TN Mitigation Guidelines

- Use TN SQT to assess established and proposed mitigation sites and compare to 2004 guidelines
- Use TN SQT to assess permitted impacts and compare debits
- MOU with USACE
- Draft Mitigation Guidelines- AUGUST 2018
 - TN Debit Tool
 - TN SQT
 - 3 User Manuals

