#### **Climate Change Impacts on Stream Restoration**

Greg Jennings, PhD, PE Professor Emeritus, NC State University Jennings Environmental Greg@jenningsenv.com



#### NC STATE UNIVERSITY

Department of Biological and Agricultural Engineering



# What Do We Know About Stream Morphology?

Streams and floodplains adjust through <u>erosion</u> and <u>deposition</u> in response to:

- Boundary conditions
- Forcing functions



#### **Boundary Conditions** Resistance to Erosion

- 1. Natural: Soil and rock strengthened by vegetation
- 2. Artificial: Rock, concrete, metal, plastic, fiber



### **Forcing Functions:** *Hydraulic Action*

- 1. Water from the watershed (*hydrology*)
- 2. Sediment supplied from upstream and locally



# What is Stream (Morphology) Restoration?

- 1. Adjusting <u>boundary conditions</u> and <u>forcing functions</u> to achieve sustainable equilibrium
- 2. Planning for an <u>uncertain</u> future





# **Certainties:** Stream (Morphology) Restoration

- Design parameters are <u>uncertain;</u> therefore all projects have <u>risk</u>
- 2. Construction and vegetation will occur during bad weather
- 3. Adaptive management will be required



#### **Risk in Stream Restoration?**

*Risk Definition:* Potential failures having negative impacts as a part of deficiencies or flaws in design or engineering.



# What is Risk in Stream Restoration?

- Erosion and/or deposition
- Infrastructure threats
- Ecological functions sub-optimal
- Human disappointment



I got a call from a resident adjacent to MAFC, claims design is flawed or contractor is really bad. He wanted to let me know the actual stream bed was not consistent throughout. There were areas that were holding more water than others.... no joke....

# How Do We Reduce Risk in Stream Restoration?

- 1. Boundary Conditions: Soil Strengthening
  - Earth (soil, rock)
  - Artificial supplements (concrete, plastic, fiber)
  - Vegetation (bio-engineering)
- 2. Forcing Functions: Hydraulic Force Reductions
  - Watershed hydrology (retention, LID)
  - Shear stress (depth, slope): FLOODPLAIN
  - Sediment supply (stream power)





# Reducing Risk: Boundary Conditions

Soil Strengthening:

- Wood Toe Revetment,
- Matting
- Vegetation





# Reducing Risk: Forcing Functions

Hydraulic Force Reductions:

- Watershed hydrology (retention, LID)
- Shear stress (depth, slope): *FLOODPLAIN*
- Sediment supply (stream power)

*When in Doubt, Spread it Out!* 



# Reducing Risk: Forcing Functions

Floodplain Expansion for Shear Stress Reduction

When in Doubt, Spread it Out!





Harman, W., R. Starr. 2011. Natural Channel Design Review Checklist. US Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD and US Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Wetlands Division. Washington, D.C. EPA 843-B-12-005

#### **Stream Restoration in an Urban Tributary:** Morrisville Aquatic and Fitness Center, Morrisville, NC

Greg Jennings Jennings Environmental Greg@jenningsenv.com

Joshua Baird Town of Morrisville, NC JBaird@townofmorrisville.org







#### **Project Location (EPA Level III Ecoregions)**



### UT Crabtree Creek, MAFC, Morrisville, NC

- Urban headwater stream in Neuse River Basin
- Drainage Area = 0.2 square miles



# **Stream Problems**

- Erosion
- Infrastructure
- Vegetation





# **MAFC Opportunities**

- Stream Restoration
- Outfall Stabilization
- Stormwater BMP
- Education









# **Evaluating Alternative Solutions**

- MCDA: Multiple-Criteria Decision Analysis
- Consider stakeholder input & implementation factors (constraints, cost, timing, practicality)
- Evaluate alternatives based on **Objectives**:
  - <u>*Risk Management*</u> (Safety, Infrastructure, Flooding)
  - <u>Ecosystem Functions</u> (Habitats, Water Quality, Floodplains, Buffer)
  - <u>Stream Stability</u> (Streambanks, Equilibrium, Sed Trans)
  - <u>Community</u> (Stormwater, Aesthetics, Access & Education)

# Multiple-Criteria Decision Analysis (MCDA)

| Multi-Criteria Decision<br>Analysis (MCDA):<br>Morrisville Aquatics and<br>Fitness Center,<br>Morrisville, NC | Risk<br>Management |                              |          | Ecosystem Function<br>Objectives |               |                         |                           | Stream Stability<br>Objectives |                               |                            | Community<br>Objectives |            |                         |                                 |                          |                         |                         |                         |              |
|---------------------------------------------------------------------------------------------------------------|--------------------|------------------------------|----------|----------------------------------|---------------|-------------------------|---------------------------|--------------------------------|-------------------------------|----------------------------|-------------------------|------------|-------------------------|---------------------------------|--------------------------|-------------------------|-------------------------|-------------------------|--------------|
|                                                                                                               | Safety             | Infrastructure<br>Protection | Flooding | Aquatic Habitats                 | Water Quality | Floodplain<br>Functions | Native Riparian<br>Buffer | Streambank Stability           | Natural Equilbrium<br>Channel | Balanced Shear<br>Stresses | Watershed<br>Protection | Aesthetics | Access and<br>Education |                                 |                          |                         |                         |                         |              |
| Objective Weighting Factor<br>(0 to 3)                                                                        | 3                  | 3                            | 3        | 2                                | 2             | 1                       | 2                         | 2                              | 2                             | 2                          | 2                       | 2          | 2                       | Length<br>of<br>Project<br>(ft) | Cost<br>Estimate<br>(\$) | Unit<br>Cost<br>(\$/ft) | MCDA<br>Matrix<br>Score | MCDA<br>Score<br>per \$ | MCDA<br>Rank |
| Option 1. Plant Buffer and<br>Manage Invasives, stabilize<br>outfall                                          | 0                  | 2                            | 0        | 1                                | 1             | 1                       | 3                         | 1                              | o                             | o                          | 2                       | 3          | 2                       | 583                             | \$ 44,358                | \$ 76                   | 33                      | 0.43                    | 1            |
| Option 2. Realign unstable<br>reach, stormwater BMP,<br>maintain existing driveway                            | 5                  | 5                            | 1        | 4                                | 4             | 3                       | 4                         | 4                              | 4                             | 4                          | 5                       | 5          | 5                       | 583                             | \$226,789                | \$ 389                  | 114                     | 0.29                    | 2            |
| Option 3. Realign unstable<br>reach, larger stormwater<br>BMP, relocate driveway                              | 5                  | 5                            | 1        | 4                                | 5             | 4                       | 5                         | 4                              | 4                             | 4                          | 5                       | 5          | 5                       | 583                             | \$305,951                | \$ 525                  | 119                     | 0.23                    | 3            |
| Option 4. Realign maximum<br>reach length, larger<br>stormwater BMP, relocate<br>driveway                     | 5                  | 5                            | 1        | 5                                | 5             | 5                       | 5                         | 5                              | 5                             | 5                          | 5                       | 5          | 5                       | 583                             | \$428,549                | \$ 735                  | 128                     | 0.17                    | 4            |

#### **Design Plan for Bid: March, 2018**









# Flow Conditions: June - August, 2018







# **Summary: Risk Management**

Boundary conditions (vegetation) Forcing functions:

- Watershed hydrology
- Floodplain
- Local shear stress
- Sediment supply

Thank you, Greg Jennings, PhD, PE Professor Emeritus, NC State University Jennings Environmental Greg@jenningsenv.com



#### NC STATE UNIVERSITY

Department of Biological and Agricultural Engineering

Jennings Environmental