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Background




Stream Restoration and Water Quality

Baltimore
» Growing interest in stream restoration for
water quality
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» Chesapeake Bay Program (CBP) protocols give
nitrogen credit for specific restoration
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Hyporheic exchange and denitrification
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Riparian zone
e ey

» Hyporheic exchange is where water
leaves channels, enters sediment, and
returns to channel in short distance

Flood plain

VP OISz
» Once channel water is in the sediment,

nitrate can be removed by denitrification
(anoxic conditions)

» CBP Protocol 2: Credit for nitrate removal
within hyporheic zone (hyporheic box)
during baseflow

Hyporheic Box } 5 feet depth

Figure 3 of Berg et al. 2014

Berg, J., J. Burch, D. Cappuccitti, S. Filoso, L. Fraley-McNeal, D. Goerman, N. Hardman, S. Kaushal, D. Medina, and M. Meyers (2014).
Recommendations of the Expert Panel to Define Removal Rates for Individual Stream Restoration Projects. Chesapeake Bay Program.




Knowledge Gaps (Nitrate)

» Do not know relative efficacy of different types of in-stream structures
» Log dams, boulder weirs
» Buried structures

» More importantly, do not know how efficacy varies in time and space:
» Channel discharge (season)
» Sediment characteristics (watershed location)
» Groundwater heads (season, watershed location)

» CBP Protocol #2 is important advance, but need to understand how efficacy
varies in time and space




Methods
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In-stream structures: fully spanning
weirs

Engineered

Natural (Stream Restoration)

source: NRCS Stream Restoration Design Handbook

e.g., log dam, debris dam, large wood, boulder
weir, cross vane, upstream V




Weirs induce hyporheic exchange

(circumneutral case)
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In-stream structures: buried structures

» Most in-stream structures are in the channel

» New idea: buried structures, beneath the channel

» Also induce hyporheic exchange

» Advantages: less erosion/scour, less maintenance

» Areas of different sediment hydraulic conductivity (K) in streambed induces

exchange
s e e R

lower K '
areas of _
sediment sediment/

groundwater

Fig. 4. Example flow paths and RTs within BEST at 1% slope and K =
5.8 x 107% ms™!

Herzog, S. P, C. P. Higgins, and J. E. McCray. 2016. Engineered Streambeds for Induced Hyporheic Flow: Enhanced R
Nutrients, Pathogens, and Metals from Urban Streams. Journal of Environmental Engineering 142.




Field data and calibration

» Second order stream in Jefferson National
Forest

» Groundwater levels, slug test data to
determine hydraulic conductivity, stream
flow measurements, tracer experiment
data, and stream surveys

» Calibrated surface water and groundwater
hydraulics and surface water transport




Sensitivity Analysis

Value Conditions

Groundwater Varied so that stream  Losing Losing (10 L/s Gaining (78.3 Varied parameter
Levels changed from overall from stream to L/s from

losing to overall gaining groundwater) groundwater
conditions to stream)
Variation based on 6 d 0.6 d! 36 d- Only run under base
Hester et al (2016) case (losing) conditions
Discharge Varied to be similar to 9 L/s 6L/s 13 L/s Only run under base
lowest, average, and case (losing) conditions
highest discharges from
field experiments
Hydraulic Varied from that of fine 103 m/s 10 m/s 102 m/s Run under all three
Celplelani st G E gravel to silt conditions (losing,
neutral, gaining)
Type of Fully channel-spanning Fully N/A N/A Run under all three
Structures weirs, partially channel- conditions (losing,
channel-spanning weirs, spanning neutral, gaining)
and buried structures  weirs
10 0 20 Run under all three

Number of Number of fully
Structures channel-spanning weirs
added to stream

13

conditions (losing,
neutral, gaining)



Results
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Hydraulics
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Hydraulics
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restoration structures and natural streambed morphology. Ecological Engineering 115:105-121.




Hydraulics
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Hydraulics
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Hydraulics

» Net reach scale effect
» Little effect of structure type
» Little effect of humber of structures
» Big effect of groundwater heads (gaining = high GW heads and vice versa)
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Nitrate
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Nitrate

» Net reach scale effect, percent nitrate loss in channel

» Little effect of structure type

» Little effect of number of structures

» Big effect of groundwater heads (gaining = high GW heads and vice versa)
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Nitrate

» Net reach scale effect, percent nitrate loss in channel

Big effect of groundwater heads (losing = low GW heads = more downwelling,
and vice versa)

» Big effect of sediment texture (hydraulic conductivity)
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Conclusions and Application




Study conclusions

Less effect on denitrification

» In stream structure type (despite title of talk)

» Number of structures and even presence of structures

Depend on location in
watershed

More effect on denitrification

» Reach characteristics
» Groundwater levels (i.e. gaining/losing) Depends on time of year
» Sediment texture (hydraulic conductivity)

» Streambed topography at larger scales than structures (reach scale)

» In other words, getting nitrate into groundwater is the key, and losing
conditions and high hydraulic conductivity accomplished that




Application

» Watershed position more important than engineering design:
> Watershed location affects groundwater levels and hydraulic conductivity
» Human land use affects both
» e.g., urbanization can increase or decrease groundwater levels
» e.g., urban construction and agriculture can increase fine sediment loading
» Climate change?
» Can we engineer these things?
> We can engineer coarser channels (although may not last if watershed remains unchanged)
» Can we engineer losing reaches?
» Long pool/riffles?
» Oris it more a question of site selection?
>  But site selection is difficult (many constraints)

» Chesapeake Bay Program removal credits for enhancement of hyporheic exchange may be not be
generally applicable to all sites
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Literature comparison

Table 5
Comparison of induced hyporheic flow and denitrification among different studies of instream restoration structures.

Study Herzog et al. (2016), buried Current study, buried structures Hester et al. (2016) fully channel- Current study, fully channel-
structures spanning weirs spanning weirs

Induced Flows 0.023-0.151 L/s downwelling for 1 ~ 0.01L/s less downwelling per buried - 0.09L/s more downwelling per full
structure structure weir

Induced Denitrification =~ 1-2% for 1 structure 0.01% less denitrification per buried  1.5% per full weir 0.28% per full weir

structure




Literature comparison

» Other studies have noted the importance of groundwater levels for hyporheic
exchange (Azinheira et al, 2014; Hester and Doyle, 2008; Malzone et al, 2016;
Lewandowski and Nutzmann, 2010; Mayer et al, 2010); stream topography
(Kasahara and Wondzell, 2003; Gooseff et al, 2006; Harvey and Bencala,
1993), and K (Azinheira et al, 2014; Hester and Doyle, 2008; Ward et al, 2011;
Rahimi et al, 2015).

» Other studies have found similar effects of groundwater levels on nitrate
(Rahimi et al, 2015) and K (Hester et al, 2014; Menichino and Hester, 2014;
Hester et al 2016)




