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Making Stream Restoration More
Sustainable: A Geomorphically,
Ecologically, and Socioeconomically
Principled Approach to Bridge the
Practice with the Science

ROBERT 1. HAWLEY

Despife large advances in the state of the science of stream ?\:Db%\' and river mechanics, the practitioner-driven field of stream restoraticn

remains plagued by narrowly focused projects that sometimes even fail to improve aquatic habitat or geomorphic stability—two nearly universal
praject goals. The infent of this article is to provide an accessible framework that bridges that gap between the current stafe of practice and
@ more geomprphically robust and ecologically holistic foundation that also provides better accounting of socioeconoemic factors in support of
mare sustaingble stream restoration outcomes. If poinis v severnl more comprehensive design references and presents some simple strafegies that
could be used to protect against common faiure mechanisms of ubiquitous design approaches (ie.. regional curves, Rosgen planform, and grade
controll. From the simple struchure design to the watershed-scale restoration program. this may be a first step toward @ more geomorphically
principled, ecologically holistic, and socioeconomicafly sustainable field.

Keywords: stream restoration, inability, ecological engineering, freshwater biology, geomorpholagy

state of the practice of stream restoration
includes sweeping vartability across ecoregions, polig-
cal Jurtsdictions, and practitioner groups (Bernhardt et al.
2005). Design philosophies range from “cookle-cutter” form-
based methods to highty tallored process-based approaches
that incorporate ecological and hydrogeomarphic drivers.
Project stakeholders can encompass assortments of regu-
lators, developers, environmentalists, recreationalists, city
or infrastricture managers, property owners, and others.
Spattal scales span from the single structure {e.g., less than a
10-meter reach) to the entire watershed, with goals extending
from improved channel stability to the restoration of ecosys-
tem processes. Project outcomes can fluctuate from actually
degrading stream habitat (Smith SM and Prestegaard 2005)
and biatic integrity (Palmer et al. 2010) to Testoring a more
natural flow regime and facilitating ecologtcal tmprovement,
such as expanded avatlability of habitat (Hawley et al 2017)
or improved water quality (Roley et al. 2012). Cosls can
range from less than $1000 to more than $1 hillion (Jamison

2015) and are a poor predictor of project outcomes in many
Ccases.

The most prevalent types of United States-based stream
restoration activitles typlcally focus on mantpulating in-
stream habitat via heavy construction (e.g., installing boul-
der structures, remeandering a channel via large-scale
carth moving, and engaging in other activities requiring
large equipment). Although the industry has expertenced
incremental shifts toward more geomorphically robust and
ecologically viable approaches—for example, “River Styles”
In Auwstralia and New Zealand (Brierley and Fryirs 2005)
and United Kingdom-based putdance centered on reducing
runoff at the source (Environment Agency 2010)—a plural-
ity of United States-based stream channel designers (per-
haps even a majority?) organize thetr designs arund three
well-intended but fallible practices: Tegtonal curve dimen-
stoms, Rosgen (1994) planform pattern, and grade control
structures to constrain the profile {Le., “dimenston, pattern,
and profile”; see box 1), The popular form-based approach
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Stream Restoration Industry

“Restored” Preserved
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Adapted from Hawley (2018)
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Floodplain Erosion

Adapted from Hawley (2018)
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Chute Cutoffs

Adapted from Hawley (2018)
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Grade Control Flanking

Adapted from Hawley (2018)
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Inadequate Armor

Adapted from Hawley (2018)
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Even “Easy”
Settings Can Be
Prone to Failures

Adapted from Hawley (2018)
BioScience







Let’s Get It Right

Mountain headwater streams
~.  flow swiftly down steep
slopes and cut a deep

V-shaped valley. Low-elevation streams
Rapids and merge and flow down
waterfalls are gentler slopes. The

commen, valley broadens and
the river begins to
meander.

= Three longitedinal profile zones.
m Corridor Restoration: Principles, Provesses, and Practioes, 10/98.
ncy Stream Restoration Working Group (15 Federal Agencies of the US).

At an even lower
elevation a river wanders
and meanders slowly
across a broad, nearly flat
valley. At its mouth it may
divide into many separate
channels as it flows across
a delta built up of river-
borne sediments and into
the sea.



Stream Geomorphology 101:
Tendency Toward Equilibrium

~ Resistance a Erosion
| Sediment Supply in Balance
with Water Supply and Slope




Lane’s (1955) Balance
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Lane’s (1955) Balance

Resistance ol Erosion
sediment supply (Qs) discharge (Q)
sediment size (d,) slope (S)
bankfull width (W) bankfull depth (y)
floodplain width floodplain depth
grade control valley slope ...
bank strength

vegetation ...

Adapted from Hawley (2018)
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Common Practice

* Dimension

Bankfull width Regional Curves

_\ BF Area /

* Pattern Rosgen Stream Type

* Profile

\_/\Grade Control

N




Regional Curve Approaches typically
Do Not Fully Account for Lane’s Balance

Resistance o Erosion

| & |

sediment supply (Qs) discharge (Q)
- - F‘\\
sediment size (d,) slope (S)
bankfull width (W) bankfull depth (y)
floodplain width v floodplain depth
grade control valley slope ...

bank strength
vegetation

Bankfull width (m)

Ohio regional
curve
+/- std. error
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" Drainage area (km?)

Adapted from Hawley
(2018) BioScience



Regional Curve Approaches typically
Do Not Fully Account for Lane’s Balance

Constructed Reach Sediment Supply Reach

Fine bed material, high mobility Coarse bed material, low mobility



Bankfull Area (ft?)

Regional Curves often Mask
Considerable Scatter across Reference Sites
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Steeper Settings
-> Higher Energy
-> Larger Channels
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Too Small of a Channel in a Moderately Steep Valley
- Floodplain Erosion

~10 Floodplain Floodplain
SV 1% Shear Stress -~ Depth__
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Unit Shear Stress
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Vertical (ft)

Bench/Floodplain Shear Stress Increases with Slope

Stable @ 0.05%
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Flatter Slopes, Smaller Channel, Lower Bench



Vertical (ft)

Bench/Floodplain Shear Stress Increases with Slope
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Vertical (ft)

Bench/Floodplain Shear Stress Increases with Slope
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Larger Channels

Steeper Slopes Require Larger Channels for
Bench/Floodplain Stability
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Common Practice

* Dimension

Bankfull width Regional Curves

_\ BF Area /

* Pattern Rosgen Stream Type

* Profile

\_/\Grade Control

N




“In every respect, the valley rules the stream”
(Hynes 1975)

Mountain headwater streams
-, flow swiftly down steep
slopes and cut a deep

V-shaped valley. Low-elevation streams
Rapids and merge and flow down

waterfalls are gentler slopes. The

common. valley broadens and and meanders slowly

the river begins to across a broad, nearly flat
meander. valley. At its mouth it may
divide into many separate
channels as it flows across
a delta built up of river-

borne sediments and into
the sea.

At an even lower
elevation a river wanders
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Stable Channel Patterns Require Proportional
Energy and Resistance

Adapted from Hawley
(2018) BioScience



Common Practice

* Dimension

Bankfull width Regional Curves

_\ BF Area /

* Pattern Rosgen Stream Type

* Profile

Grade Control




Grade Control Must Actually Control the Grade

Adapted from Hawley
(2018) BioScience



Making Stream Restoration More
Sustainable: A Geomorphically,
Ecologically, and Socioeconomically
Principled Approach to Bridge the
Practice with the Science

ROBERT J. HAWLEY

Despite large advances in the stale of the sclence of stream ecology and river mechardcs, the practiioner-driven field of stream restonation

it of this artice s o
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n, and grade

Keywords: stream restoration, sustainabiinty, ecolopical engimeering, freshwater blofogy, peomorphoiogy

he state of the practice of stream restoration

includes sweeping variahility across ecoregions, politi-
cal jurisdictions, and practitioner groups (Bernhardt et al.
2005). Deesign philosophies range from “cookie-cutter” form-
based methods to highly tailored process-based approaches
that incorporate ecological and hydrogeomorphic drivers.
Project stakeholders can encompass assortments of regu-
lators, developers, environmentalists, recreationalists, city
or infrastructure managers, property owners, and others,
Spatial scales span from the single structure (e.g., less than a
10-meter reach) to the entire watershed, with goals extending
from improved channel stability to the restoration of ecosys-
tem processes. Project outcomes can fluctuate from actually
degrading stream habitat (Smith 5M and Prestegaard 2005)
and biotic integrity (Palmer et al. 2010) to restoring a more
natural flow regime and facilitating ecological improvement,
such as expanded availahility of habitat (Hawley et al 2017)
or improved water quality (Roley et al. 2012). Costs can
range from less than $1000 to moze than §1 billion (Jamison

2015) and are a poor predictor of project outcomes in many
cases,

The most prevalent types of United States—based stream
restoration activities typically focus on manipulating in-
stream habitat via heavy construction (e.g. installing boul-
der structures, remeandering a channel via large-scale
earth moving, and engaging in other activities requiring
large equipment). Although the industry has experienced
incremental shifis toward more geomorphically robust and
ecologically vishle approaches—for example, "River Styles
in Australia and New Zealand (Bricerdey and Fryirs
and United Kingdom-based guidance centered on reducing
runofl at the source (Environment Agency 2010)—a plural-
ity of United States-hased stream channel designers (per-
haps even a majority?} organize their designs around three
well-intended buat fallible practices: regional curve dimen-
sions, Rosgen (1994) planform pattern, and grade control
structures to constrain the profile (Le., “dimension, pattern,
and profile”; see box 1). The popular form-based approach
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Geomorphic
Principles

Floodplain shear stress

— less than ~1-2 psf

Equilibrium pattern
— balanced energy &

resistance through bends

Account for ‘reference’
stream resistance

Adequate rock sizing/
grade control

— e.g. Q100 +FS

Sediment continuity
— i.e. Bledsoe et al. 2017



Sediment Continuity Approaches (such as “CSR”
Tool) Can Fully Account for Lane’s Balance

Resistance Erosion
l A ,I, NCHRP
sediment supply (Qs) discharge (Q) =

sediment size (d.) slope (S) ,

=]

(Bledsoe et al., 2017)
f T 8(Q)dQ
Sediment (s

yield curve
Flow P(Q)
frequency \‘ \
\ ' Sediment

discharge
rating curve

Qos  Qeyr Qrs Discharge



Simple Strategies to Help
Balance Resistance & Erosion

o L > ) }‘*’ . . 3(

Increase roughness on FP using
brush piles and large woody debris (LWD)

Floodplain (FP) roughness \%—\ \/g}\ —

Adapted from Hawley
(2018) BioScience



Simple Strategies to Help
Balance Resistance & Erosion

Valley-wide buried grade control

Valley grade control

Adapted from Hawley
(2018) BioScience



Simple Strategies to Help
Balance Resistance & Erosion

Meander bends between consecutive wavelengths
misaligned from down-valley direction

Irregular planform N -

Adapted from Hawley
(2018) BioScience



Simple Strategies to Help
Balance Resistance & Erosion

Intentional secondary channels to reduce the
energy on the rest of the floodplain

T o=V - — = — i S

Secondary channel
armored with coir fabric and/or buried grade control

Secondary channels e N -

Adapted from Hawley
(2018) BioScience



Simple Strategies to Help
Balance Resistance & Erosion

Bury riffle armor well into banks

More stone/LWD N ) -

Adapted from Hawley
(2018) BioScience



Simple Strategies to Help
Balance Resistance & Erosion

Design FP for stable vegetation (max ~1-2 psf at Q,,,)
by keeping more water in the channel

Larger cross section
\/

Adapted from Hawley
(2018) BioScience



Simple Strategies to Help
Balance Resistance & Erosion

Meander the dominant flow path during
flood flows using valley grading

Keep the dominant flow path closer to the main channel
using two-stage design and/or steeper cross slopes

Irregular cross section \ /
Bl "

Adapted from Hawley
(2018) BioScience



Simple Strategies to Help
Balance Resistance & Erosion

Meandered valley grading

Irregular planform

Brush piles/LWD
Two-stage design e Secondary channel

\_/\/’E';:g—

Steeper cross slope

Valley-wide buried grade control

Adapted from Hawley
(2018) BioScience



“Streams not just as things in space but
processes through time”
(Bledsoe et al., 2008)




Qag:
Forested watershedwith
abundant inline and offline
wetlands, woody debris, log
Joms, anabranched channels
and a well-conmectedfloodplain

g o
Deforested, agravian
watershed with highly
altered sediment regime,
channelized streams,
removed woody debris,
constructed dams anda
less-commectedfloodplain

Q-r-r Q:-r,_

Suburbanizedwatershed with

[fragmented ond buried (piped)

streans, kighly altered flow regimes

arnd excess erosive energ) in

unstable, entrenched channels

gffectively discomnectedfrom
floadpiains, with abundant urban Adapted from Hawley
infrastructure including a kigh (2018) BioScience
density of gfficient drainage paths



Bankfull Wetlands

i

Reduce in-stream erosion by creatind
storage.in a disconnected floodplain




Bankfull Wetlands




Bankfull Wetlands
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Hand-placed Wood Structures




Hand-placed Wood Structure
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placed Wood Structures

Hand




Ecological Rejuvenation along Highways
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Ecological Rejuvenation along Highways




Ecological Rejuvenation along Highways
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Ecological Rejuvenation along Highways
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Detention Basin Retrofits

Reduce in-stream erosion and restore
baseflows by restricting outlets

CONVENTIONAL OUTLET

RESTRICTED OUTLET
WITH BYPASS



Detention Basin
Retrofits
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Detention Basin
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Detention Basin
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Detention Basin
Retrofits
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Detention Basin
Retrofits

Incremental Rainfall (in/hr)
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Detention Basin
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Water Level / Mean Water Level (m/m)

Detention Basin Retrofits

Upstream

Post-retrofit= 2.31
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Adapted from Hawley et al. (2017)
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Detention Basin Retrofits

ageradin®

Diameter (mm)

100

1000

Upstream (Control)

e 12/18/2013
e—11/30/2016

Spur (Retrofit)
——12/18/2013
—7/1/2016

Downstream
—12/18/2013
—5/22/2017

Biological

Physicochemical

Geomorphology

Hydraulics

Hydrologic

Adapted from Harman et al. (2012)




Detention Basin Retrofits

Ecological Lift

| Biological |

Physicochemical

Geomorphology

Hydraulics

Hydrologic

Adapted from Harman et al. (2012)




Stream Daylighting
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Pre-development Water Flow Patterns in Lower Mill Creek
More than 300 miles of streams once flowed freely through the Lower Mill Creek area.

- Lower Mill Creek Watershed

~ Ancient Ohio River




Tod ay’s Water Flow Patterns Many of the streams became combined sewers.
Today, only 75 miles of natural streams remain, with more than 600 miles of combined
sewers.
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CSO #005 in South Fairmount under dry and wet Weather conditions.



R AT Gray Alternative
§ T e J « 1.2 Mile Tunnel (30 feet in diameter)
e H "’; | ‘ * Reduce overflows by 1 Billion gallons/year
| A oy « Store, Pump and Treat Combined Sewage

$244 Million
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[ Watershed Boundary | Existing Combined Sewer

Existing combined sewer system in the Lick Run Watershed

A look inside a tunnel.
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$122 Million (50% of the cost of Gray)
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Redevelopment
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Confluence
Gateway
District
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Lick Run Neighborhood Districts

Residential/Mixed-Use Gathering Space

Existing Small 5cake Residences in the Lick Run Watershed

Bike Lanes




Successfully Incorporating Socioeconomic Factors
- Greater Environmental Outcomes ..swi s 200

Biological

Physicochemical

Geomorphology

Adapted from Hawley (2018) HYd raulics

Hydrologic

Socioeconomics

Adapted from Harman et al. (2012)



Thank You!
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bob.hawley@sustainablestreams.com
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WHAT WE DO

SUSTAINABLE STREAMS, LLC

We are a specialized Kenmcky-based consulting firm with the mission to provide leading science,
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Bed Material Entrainment Threshold (Critical Discharge, Q_)
Varies by Orders of Magnitude across Size Classes
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Adapted from Hawley and Vietz 2016, Freshwater Science
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Simple Sediment Monitoring Cost-Effectively
Supports Equilibrium Design

“Using a few transport samples to
calibrate your transport estimate is the
single most effective thing you can do
to increase accuracy.”

— Wilcock et al., 2009

Goose Creek




Goose Creek Data Show the Value in Calibrating
Designs to the Specific Stream

Required Shear Stress for Sediment Transport
1000
E
E
g
)]
g
a —=R0sgen
£ 100 oob (2007)
5 . + Model
()]
'.g 0’0 * ® Goose Creek
S Data (2014)
X
©
=
10 | |
0.1 1 10
Critical Shear Stress (psf)

Designing Considering Only Rosgen’s Model Could Have Under-designed
Goose Creek, Causing Sediment Aggradation and Instability
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“Regional Curves”

 More Water = Bigger Channels (typically)




More Drainage Area = Larger Channels (typically)

W o Q0‘5 (most environments; Knighton, 1998)

Q (00 DAP (USGS regional curves)

> W o DA™

Bankfull Area Increases with Drainage Area

__ 50
':-.-_» = = =Hawley et al., (2013) Northern
‘; Kentucky 1% Impervious
o
< 25 .
= Sherwood and Huitger (2005)
5 USGS Ohio Bankfull Curves
c
@
0 Brockman et al. (2012) Regional
0 1 2 3 Curves for Outer Bluegrass of KY

Drainage Area (mi?)

Adapted from Smith et al. (2016, Freshwater Science)
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More Water = Larger Channels
More Stormwater = Larger Urban Streams

Bankfull Area Increases with Drainage Area

Drainage Area (mi?)

e o o Hawley et al., (2013) Northern
Kentucky 30% Impervious

== =Hawley et al., (2013) Northern
Kentucky 1% Impervious

Sherwood and Huitger (2005)
USGS Ohio Bankfull Curves

Brockman et al. (2012) Regional
Curves for Outer Bluegrass of KY

Adapted from Smith et al. (2016, Freshwater Science)



Biological

Physicochemical

Undeveloped vs. Developed F————

Watersheds T ——

Hydrologic

Middle Creek (3.3 mi?) Owl Creek (3.7 mi?)
Undeveloped (0.6% Impervious) Developing (9% Impervious)



Elevation (ft)

Biological
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Watersheds Hydraulics

Hydrologic
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Stage1 — Equilibrium

Stage 2— Incision

Stage 3 — Widening

Stage 4— Aggradation

A\ﬁ W, ,
\ )

Stage 5 — Equilibrium

Channel Evolution Sequence in
Response to Increased Flows
from Urbanization, Adapted

from Schumm et al. (1984) and

Hawley et al. (2012)




