

Connecting Science and Policy Using the Stream Quantification Tool

Will Harman, PGCidney Jones, PEStream MechanicsEcosystem Planning and Restoration

Asheville, NC

August 16, 2018

Stream Function Pyramid Framework – SQT Example

- Functional Categories & Statements
 - Hydrology: Transport of water from the watershed to the channel
- Function-Based Metrics describes/supports the functional statement
 - Flow Alteration
- Measurement Methods quantifies function-based parameter
 - Indices of Hydrologic Alteration (IHA)
- Performance Standards compares condition to reference aquatic resources
 - Presumptive Standard (Richter et al., 2011)

Richter, B. D., M. M. Davis, C. Apse, and C. Konrad. 2011. A presumptive standard for environmental flow protection. River Research and Applications DOI: 10.1002/rra.1511.

Purposes of the SQT

- 1. Determine numerical differences between an existing stream condition and the proposed stream condition.
- 2. Link restoration activities to changes in stream functions (function-based parameters).
- 3. Link restoration goals to restoration potential.
- 4. Incentivize high-quality stream mitigation.
- 5. Assist with site selection.

2008 Mitigation Rule

Department of

Department of the Army, Corps of 33 CFR Parts 325 and 332

Environmental **Protection Agency**

40 CFR Part 230 Compensatory Mitigation for Losses of Aquatic Resources; Final Rule

This rule improves the planning, implementation and management of compensatory mitigation projects by emphasizing a watershed approach in selecting compensatory mitigation project locations, requiring measurable, enforceable ecological performance standards and regular monitoring for all types of compensation and specifying the components of a complete compensatory mitigation plan, including assurances of long-term protection of compensation sites, financial assurances, and identification of the parties responsible for specific project tasks.

Offset Unavoidable Impacts to waters of the U.S.

Department of Defense

Department of the Army, Corps of 33 CFR Parts 325 and 332

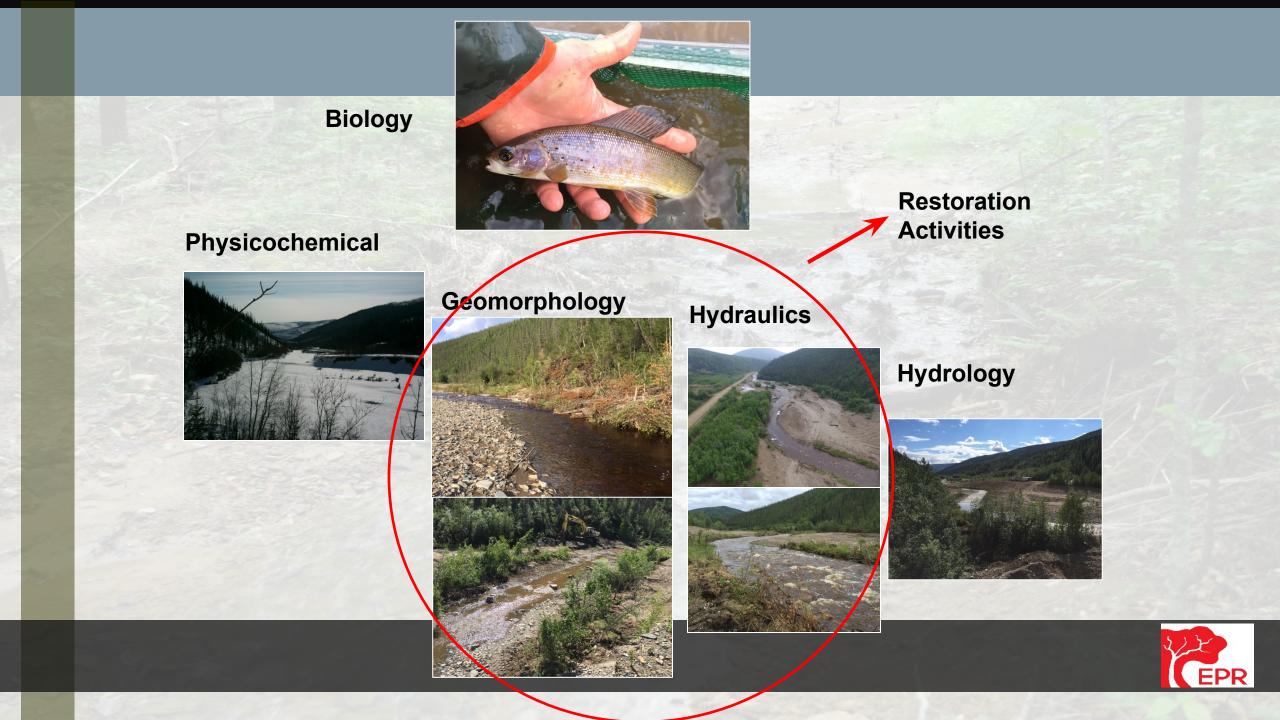
Environmental **Protection Agency**

40 CFR Part 230 Compensatory Mitigation for Losses of Aquatic Resources; Final Rule

Credit means a unit of measure (e.g., a functional or areal measure or other suitable metric) representing the accrual or attainment of aquatic functions at a compensatory mitigation site. The measure of aquatic functions is based on the resources restored, established, enhanced, or preserved.

Debit means a unit of measure representing the loss of aquatic functions at an impact or project site.

"The number of credits must reflect the difference between pre- and post-compensatory mitigation project site conditions, as determined by a functional or condition assessment or other suitable metric."


Dimension, Pattern, and Profile

 Functions means the physical, chemical, and biological processes that occur in ecosystems.

 Restoration means the manipulation of the physical, chemical, or biological characteristics of a site with the goal of returning natural/historic functions to a former or degraded aquatic resource."

Quantifying Functional Lift and Loss

Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter
Hudrology	Catchment Hydrology	0.50	0.50
Hydrology	Reach Runoff	0.69	0.79
Hydraulics	Floodplain Connectivity	0.10	1.00
Geomorphology	Large Woody Debris	0.29	0.48
	Lateral Stability	0.20	0.67
	Riparian Vegetation	0.02	0.72
	Bed Material		
	Bed Form Diversity	0.20	1.00
	Plan Form	0.30	1.00
Physicochemical	Temperature	0.37	0.48
	Bacteria		
	Organic Matter	0.36	0.71
	Nitrogen		
	Phosphorus		
Dialami	Macros	0.11	0.64
Biology	Fish	0.00	0.36

Reference Condition

- Scores of 0.7 to 1.0 in the SQT.
- Culturally Unaltered, Minimal Disturbance
- *"Reference aquatic resources* are a set of aquatic resources that represent the full range of variability exhibited by a regional class of aquatic resources as a result of natural processes and anthropogenic disturbances." 2008 Rule

Ecological Performance Standards

 Ecological performance standards must be based on the best available science that can be measured or assessed in a practicable manner.

Criteria Used to Select Performance Standards in the SQT:

- Provided in peer-reviewed journals;
- Provided in government documents or monitoring databases;
- Provided in books or proceeding papers; and
- Best Professional Judgment.

Purposes of the SQT

- 1. Determine numerical differences between an existing stream condition and the proposed stream condition.
 - . Focus on the delta rather than the proposed condition
- 2. Link restoration activities to changes in stream functions (function-based parameters).
- 3. Link restoration goals to restoration potential.
- 4. Incentivize high-quality stream mitigation.
 - 1. High-quality = maximum lift
- 5. Assist with site selection.

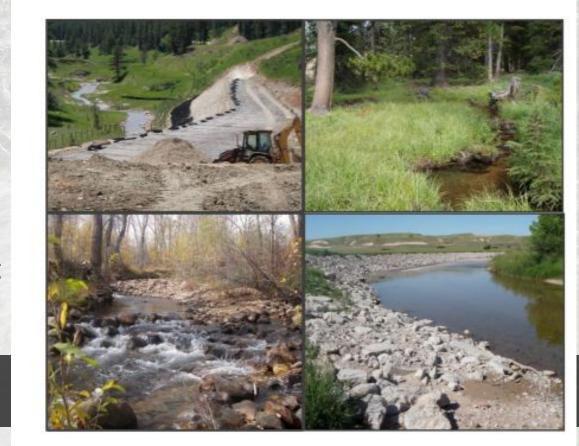
The SQT is **NOT**

A comprehensive stream condition assessment

We've left some things out.

A design tool

 Goal is to quantify functional results of restoration practices rather than dictate methods.



"The WSQT generates a condition score that is unitless, which is then multiplied by stream length to generate a "Functional Feet" score. This score is used to determine the initial credit obligation (described below). The WSQT spreadsheet calculates the change in condition at an impact site by comparing the difference between existing and proposed condition."

United States Army Corps of Engineers Omaha District Wyoming Regulatory Office

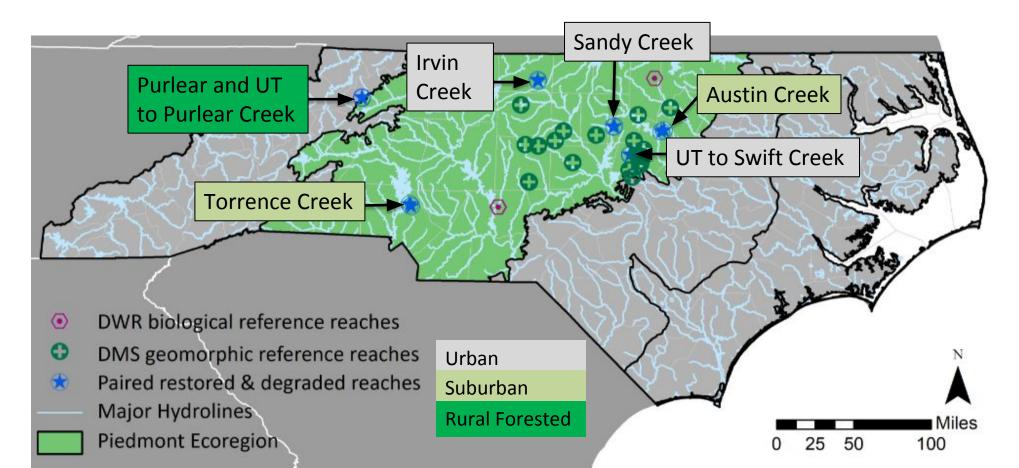
WYOMING STREAM MITIGATION PROCEDURE Version 2 (WSMP v2)

Evaluating the ecological function of restored streams in Piedmont, North Carolina using the SQT

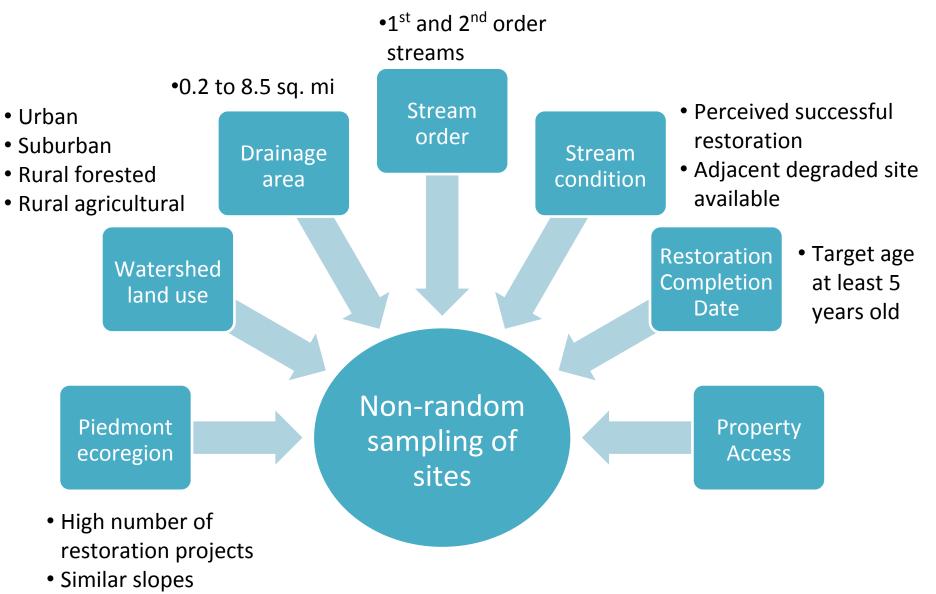
Sara Donatich¹, Barbara Doll¹, & Jonathan Page¹ ¹NC State University August 16th 2018

Research questions

Does the NC SQT accurately detect and quantify ecological function?


What is the **natural performance range** for ecological function variables in Piedmont streams?

Does the stream functions pyramid framework (embedded in SQT) apply to all stream conditions?


Which ecological function variables **correlate** best with **good biological** condition?

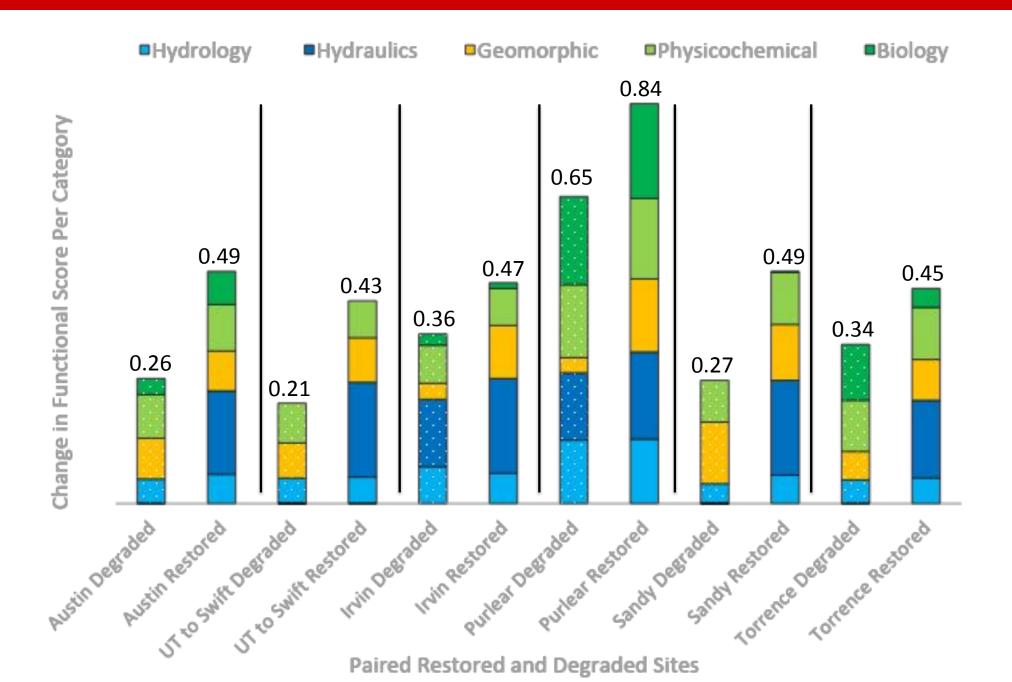
Site Location Map

- DEQ DMS geomorphic reference sites (*n=18*) [funded by NC DEQ DMS]
- DEQ DWR biological reference sites (*n=2*)
- Paired restored & degraded sites (n=12; 6 pairs) [funded by EDF]

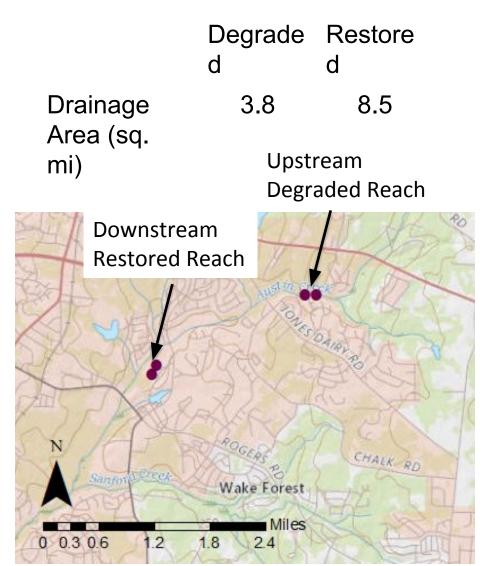
Site Selection Criteria

Data Collection

Function Category		Functional Category	Measurement Method
Hydrolog	Curve Number	category	Daily Maximum Summer Temperature (°F) Dissolved oxygen (mg/L)
Hydrauli	Bank Height Ratio	Physico-ch	
Geomorphi c	LWD Index LWD Piece Count Dominant BEHI/NBS Percent Streambank Erosion (%) Canopy Coverage (%)		Salinity (ppt) Total Nitrogen (mg/L) Total Phosphorus (mg/L) Fecal Coliform (Cfu/100 ml) % Shredders
	Buffer Width (ft) Basal Area (sq. ft/acre) Pool Spacing Ratio Pool Depth Ratio	Restoratio	NC Index of Biotic Integrity for Macroinvertebrates EPT Taxa Present Watershed Catchment
	Percent Riffle Sinuosity	n Potential	Assessment

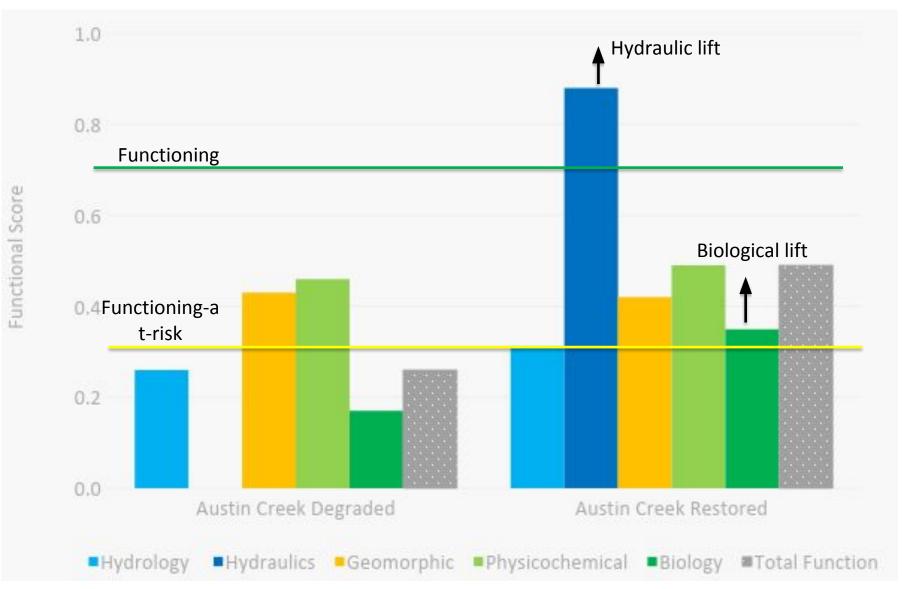

NC STATE UNIVERSITY

Methods

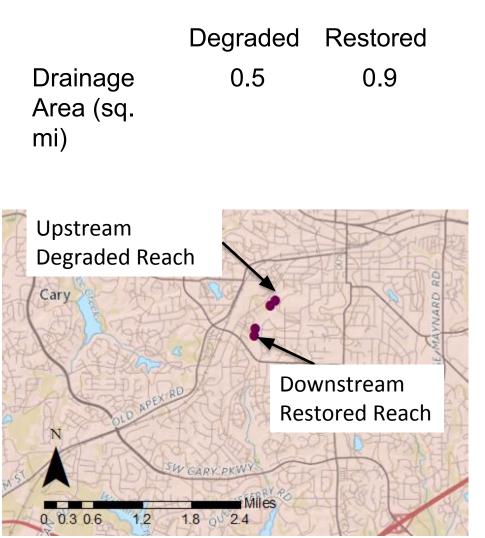

NC STATE UNIVERSITY

Results

Site 1: Austin Creek


- Wake Forest, Wake County
- Suburban watershed
- Restoration completed in 2002
- Restoration objectives:
 - stabilize banks via channel reconfiguration
 - floodplain reconnection
 - establish native riparian vegetation
 - improve natural aesthetics¹

Site 1: Austin Creek



Site 1: Austin Creek

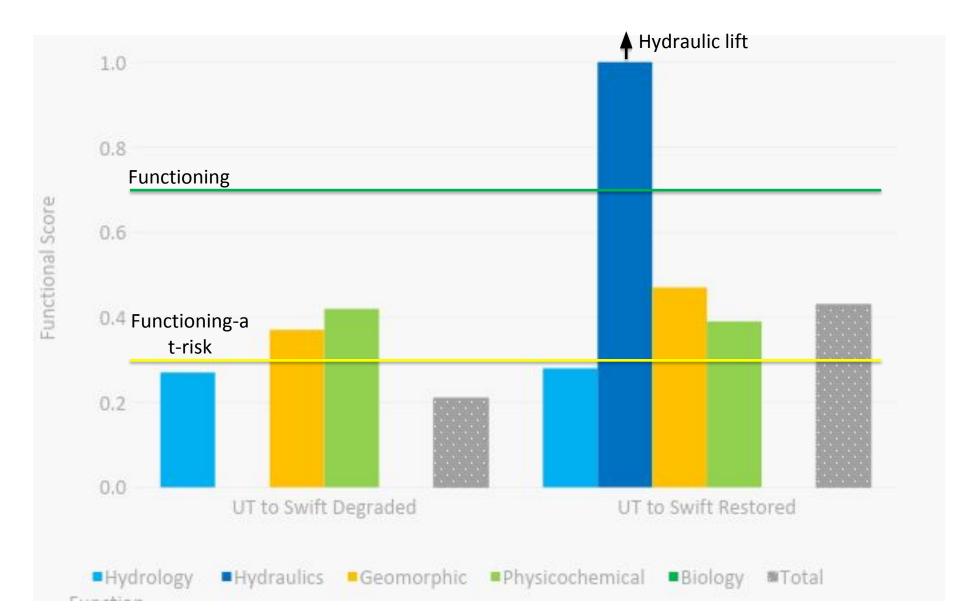
Site 2: UT to Swift Creek

- Cary, Wake County
- Suburban watershed
- Restoration completed in 2012
- Restoration objectives: Improve water quality by:
 - establishing floodplain
 - riparian buffer planting
 - stabilizing banks
 - improving aquatic habitat²

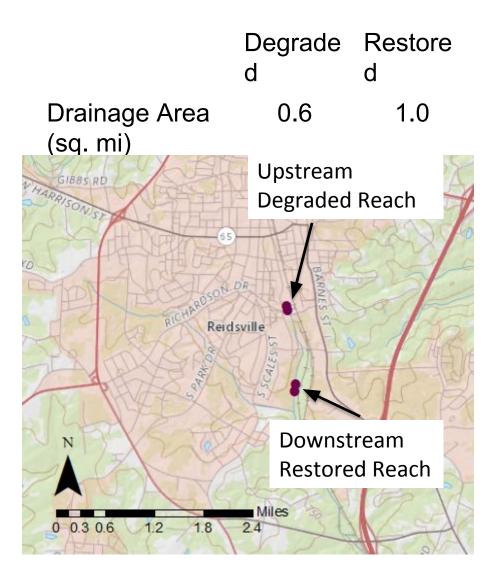
² UT to Swift Creek Restoration Monitoring Report Year 1, 2014

Site 2: UT to Swift Creek

- Cary, Wake County
- Urban watershed


Drainag	Curve	Median	Slope	Rosgen
e Area	Number	Particle	(%)	Stream
(sq. mi)				Туре
0.5	82	Gravel	1.64	G4c
0.9	82	Gravel	0.30	C4

NC STATE UNIVERSITY

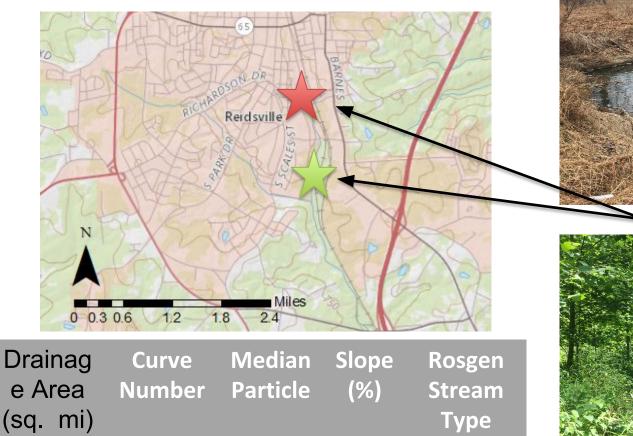

Results

Site 2: UT to Swift Creek

Site 3: Irvin Creek

- Reidsville, Rockingham County
- Urban watershed
- Restoration completed in 2011
- Restoration objectives:
 - stabilize banks
 - floodplain reconnection
 - reduce nutrient levels, sediment input, and water temperature
 - increase dissolved oxygen
 - create in-stream habitat
 - decrease channel velocities³

Site 3: Irvin Creek


- Reidsville, Rockingham County
- Urban watershed

0.6

1.0

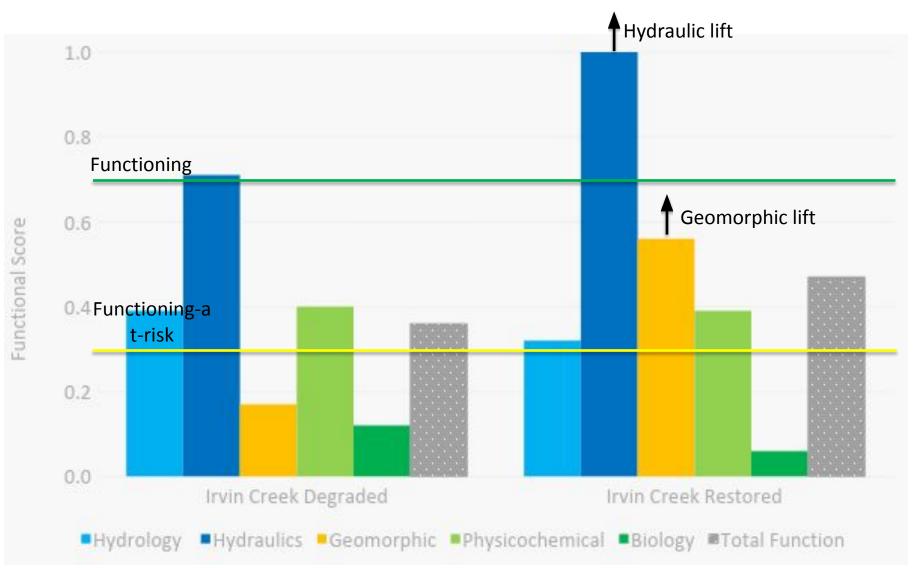
77

77

0.53

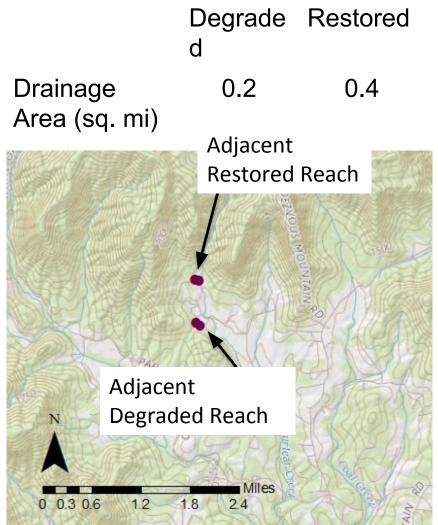
0.57

E4


C5

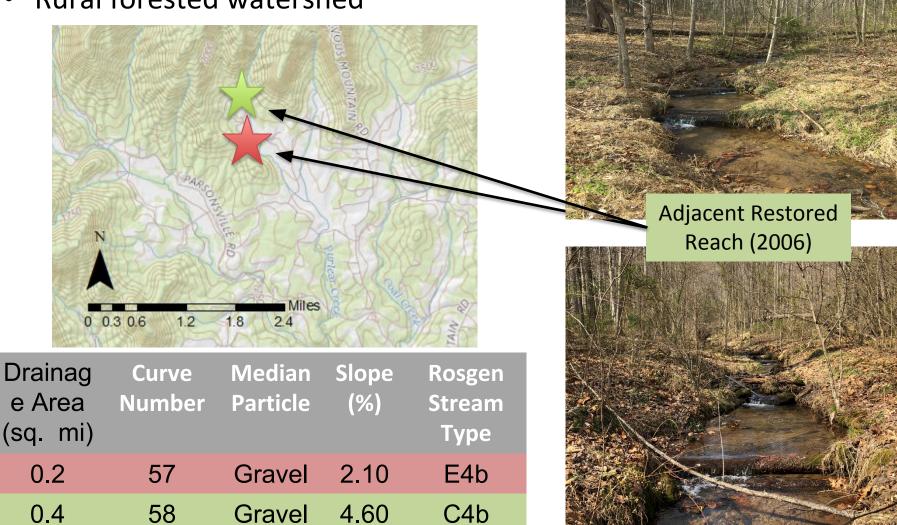
Gravel

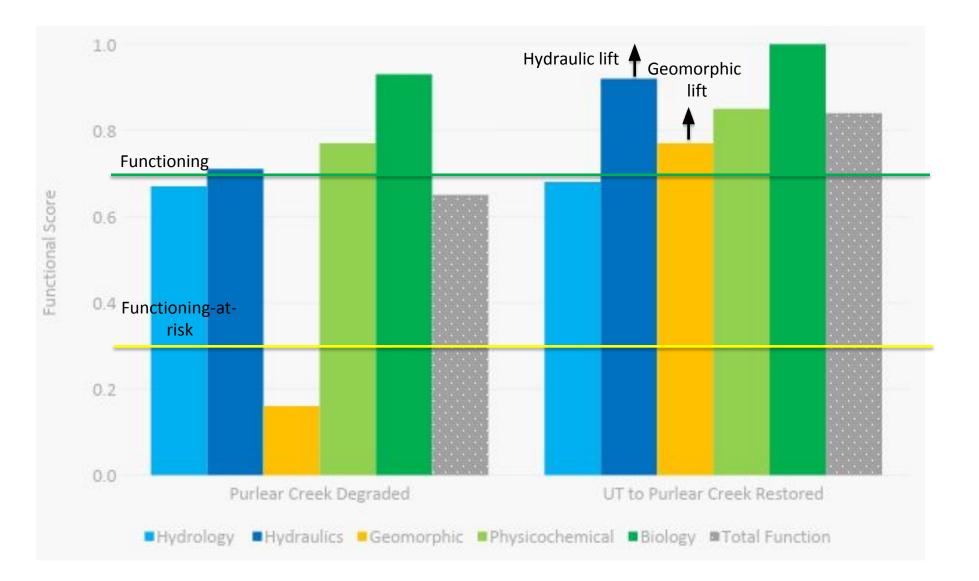
Sand



Site 3: Irvin Creek

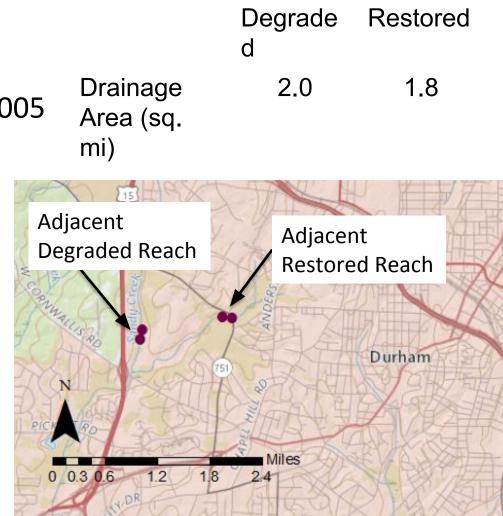
Site 4: Purlear Creek and UT to Purlear Creek


- Purlear, Wilkes County
- Rural Forested watershed
- Restoration completed in 2006
- Restoration objectives:
 - improve water quality by reducing sediment and nutrients
 - improve aquatic and terrestrial habitat for cold-water fish, mammals, birds
 - improve wetland functions to support bog turtle habitat

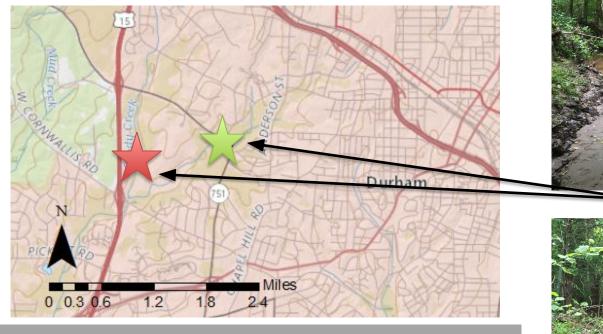

NC STATE UNIVERSITY

Site 4: Purlear and UT to Purlear Creek

- Purlear, Wilkes County
- Rural forested watershed

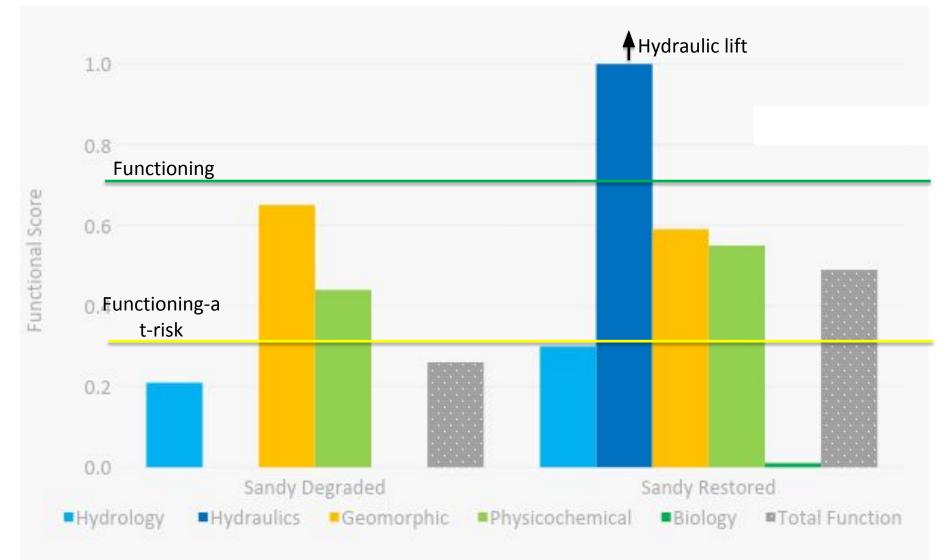


Site 4: Purlear and UT to Purlear Creek

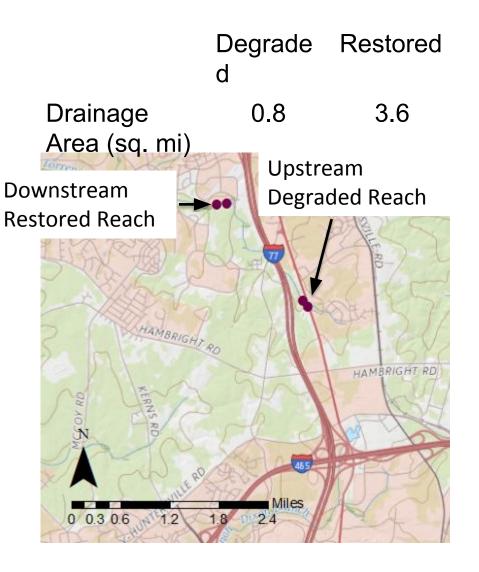

Site 5: Sandy Creek

- Durham, Durham County
- Suburban watershed
- Restoration completed in 2005
- Restoration objectives: Improve water quality by:
 - floodplain reconnection
 - riparian vegetation replanting⁴

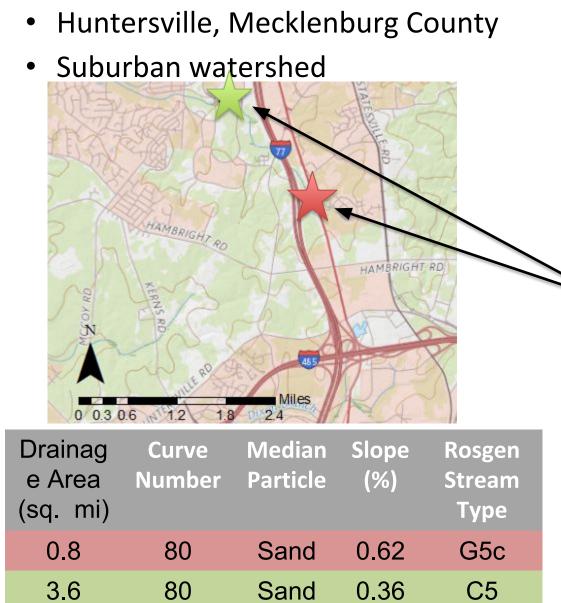
Site 5: Sandy Creek


- Durham, Durham County
- Urban watershed

Drainag	Curve	Median	Slope	Rosgen
e Area	Number	Particle	(%)	Stream
(sq. mi)				Туре
2.0	87	Sand	0.27	F5
1.8	87	Sand	0.23	E5b

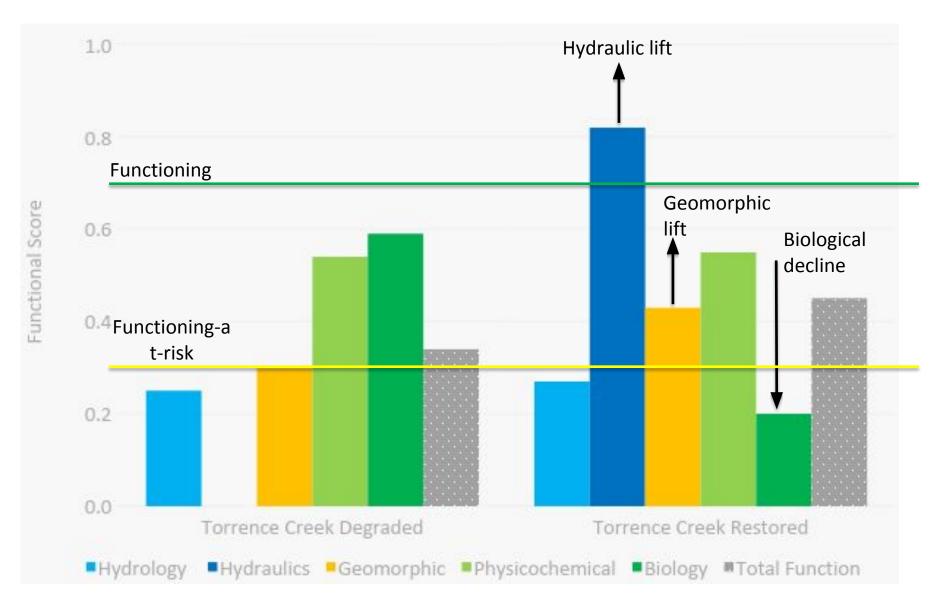


Site 5: Sandy Creek



Site 6: Torrence Creek

- Huntersville, Mecklenburg
 County
- Suburban watershed
- Restoration completed in 2013
- Restoration objectives:
 - Bank stabilization to reduce sediment loads from bank erosion



Site 6: Torrence Creek

Site 6: Torrence Creek

Functional Change Summary

Site	Overall Function	onal Change	Functional Lift
Austin Creek	Not Functioning [0.26]	Functioning-At-Ri sk [0.49]	0.23
UT to Swift Creek	Not Functioning [0.21]	Functioning-At-Ri sk [0.43]	0.22
Irvin Creek	Functioning-At-Risk [0.36]	Functioning-At-Ri sk [0.47]	0.11
Purlear and UT to Purlear Creek	Functioning-At-Risk [0.65]	Functioning [0.84]	0.19
Sandy Creek	Not Functioning [0.27]	<mark>Functioning-At-Ri</mark> sk [0.49]	0.22
Torrence Creek	Functioning-At-Risk [0.34]	Functioning-At-Ri sk [0.45]	0.11

NC STATE UNIVERSITY

Results

Urban Functional Lift due to Restoration Suburban **Rural Forested** Functional Score Change due to Restoration 0.25 0.23 0.22 0.22 0.19 0.20 0.15 0.11 0.11 0.10 0.05 0.00 Irvin Creek Purlear and Sandy Creek Austin Creek UT to Swift Torrence Creek Creek UT to Purlear Creek

Paired Restored and Degraed Sites

General Insights

- SQT functional scores reflect perceived stream condition
- Restored sites exhibit functional lift
 - Lift largely due to improved **hydraulic and geomorphic function** addressed via restoration
- **Geomorphology** category may be **diluted**
 - Improvement in structural function is negated by low-scoring, post-restoration vegetation function
 - Incentivizes monitoring
- **Regionalization** is critical to capture diverse stream systems
 - Sand-bedded systems are ripple-dune-run systems; minimal riffles naturally
 - **Percent riffle** metric currently lumps run and riffle lengths together

On-going Work

Data Collection & Analysis

- NC DEQ DMS geomorphic reference reaches (funded by DMS)
- NC DEQ DWR **biology reference** reaches
- Paired restored & degraded **rural agricultural** reaches

NC STATE UNIVERSITY

Thank you

Finding the ways that work

Sara Donatich srdonati@ncsu.edu

Aligning Policy, Practice, and Agencies: Moving From Ratios to Function Lift

Vena Jones August 15, 2018

2004 TN Stream Mitigation Guidelines

- Ratio Based
 - Language focuses on projects that re-establish maximum **biological**, chemical, and physical integrity to resource
 - Describes activity based ____ crediting-pattern, profile, and dimension
- Narrative Criteria
 - Does not require baseline information
 - Subjective

Department of

Conservation

Creates crediting drift

TDEC uses to also inform on ratios for debits Environment &

2012 Draft Stream Mitigation Guidelines

Realized deficiencies in the 2004 mitigation guidelines; qualitative/subjective and crediting drift

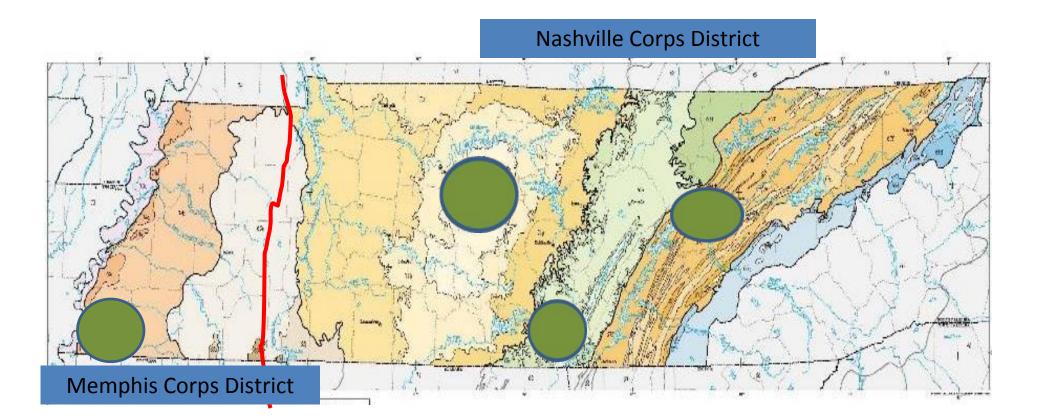
- Wanted to be consistent with USACE requirements
- Wanted to align state guidelines with the 2008 Final Rule to the extent practical for TN
- Wanted to establish **functional lift**
- Move away from linear footage/ratio based system

Shortcomings

- Received significant comment on efficacy of functional assessment parameters and methods
- Division lacked capacity to create a robust functional assessment

TDEC Steps to Policy Change (2013)

- ID problem- uncertainty, credit drift, does not meet federal rule
- Engage our stakeholders
- Evaluate potential assessment methods
- Establish parallel pathways
 - Education and outreach
 - Incremental and iterative document development
 - Data gathering
 - Tool development
 - Tools to Policy



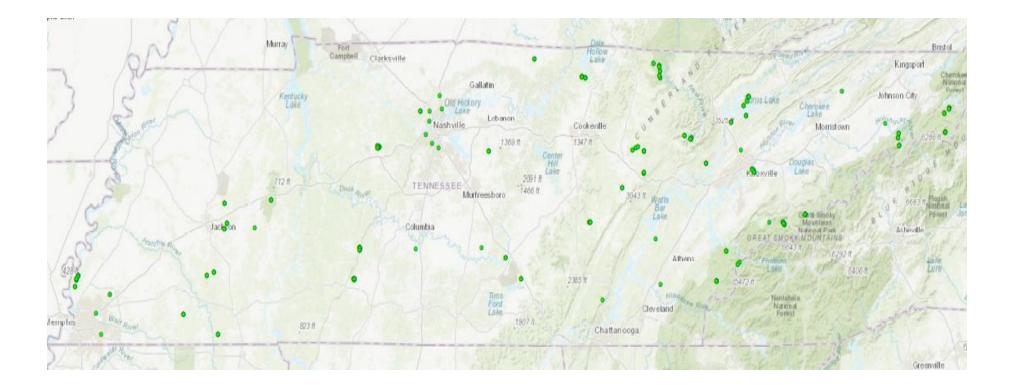
Corps Districts in Tennessee

Broad-based Collaboration 2014

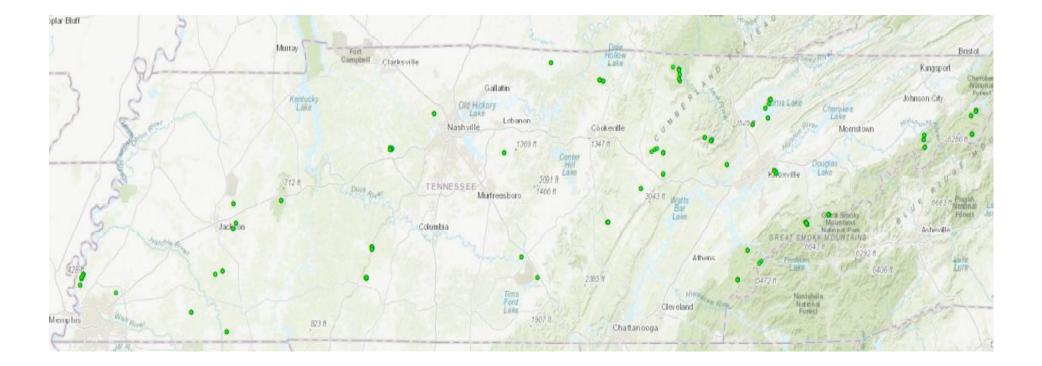
- Stakeholdering
- Provide opportunity for wide ranging feedback
- NGOs
- Consultants
- All IRT agencies
- EPA
- Universities
- MS4s
- Citizens
- Important to have transparent, predictable, and repeatable processes for credits AND debits

Establishing Pathway (2014)

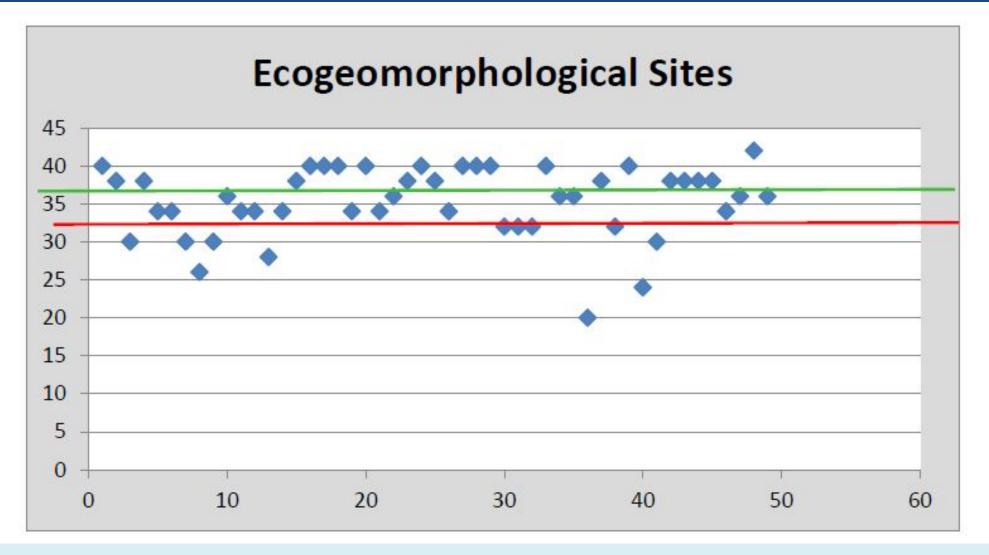
- Measurable. Transparent. Predictable. Repeatable
- Partner with USACE and IRT to develop/adopt functional assessment guidance tools
- Based on known stream functions
- Inherent relationships in stream channel metrics
- Incorporate TDEC biological and water quality data
- Regionalize as information becomes available


Data gathering and analysis (2015)

- Ecoregion based
- Regional Curves
- Bedform Diversity
- Large Woody Debris
- Riparian vegetation
- Biology
- Water Quality
- Ecogeomorphological Reference Sites
- Review 35 established compensatory mitigation sites with the TN SQT
- Riparian vegetation species composition



All Sites (115)

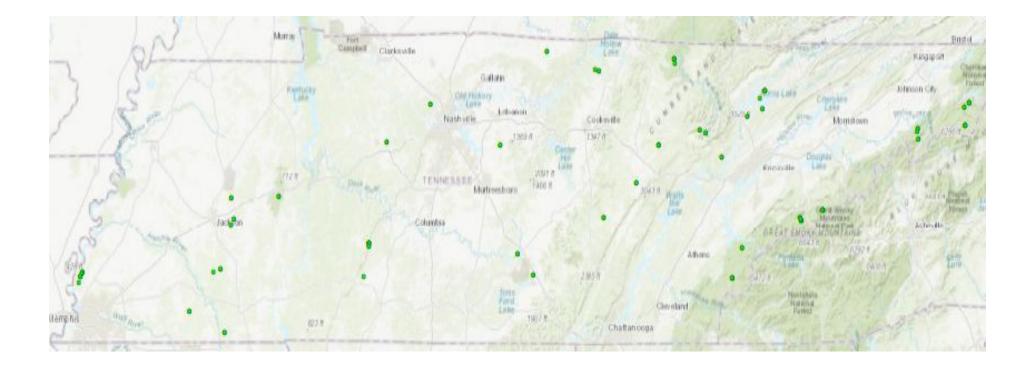


GeoMorph Sites (92)

49 geomorph sites assessed for biology and WQ; 6 not supporting (FAR/NF), 43 fully supporting; 11 (high FAR), 32 functioning are fully

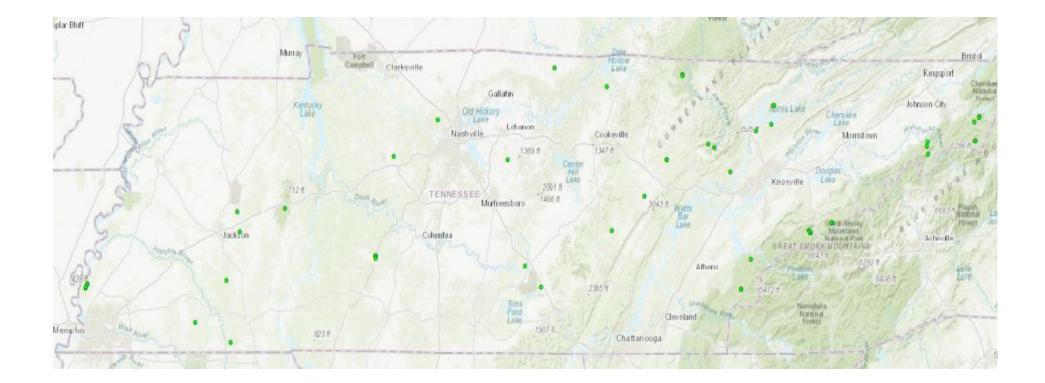
Broad Based Collaboration

- Mitigation Assessment Team (MAT)
 - Internal working group of IRT
 - TDEC, USACE, & EPA
- MAT broken into parameter driven mini teams
 - Review and analyze existing data
 - Research and gather new data
 - Incorporate TN specific data into performance curves from Stream Quantification Tool
- Stream Design Review Group
- All members of IRT



TN SQT

	Catchment Hydrology	Watershed Land Use Runoff Score					
Hydrology	Reach Runoff	Stormwater Infiltration					
94 - 2246	Reach Runon	Concentrated Flow Points					
Hydraulics	Floodplain Connectivity	Bank Height Ratio					
nyurauncs	rioouplain connectivity	Entrenchment Ratio					
	Large Woody Debris	Large Woody Debris Index					
	Large woody Debris	# Pieces					
		Erosion Rate (ft/yr)					
	Lateral Migration	Concentrated Flow Points Bank Height Ratio Entrenchment Ratio Large Woody Debris Index # Pieces Erosion Rate (ft/yr) Dominant BEHI/NBS Percent Streambank Erosion (%) Percent Armoring (%) Left - Average DBH Right - Average DBH (in) Left - Buffer Width (feet) Right - Buffer Width (feet) Left - Tree Density (#/acre) Right - Tree Density (#/acre) Left - Native Herbaceous Cover (%) Right - Native Herbaceous Cover (%) Left - Native Shrub Cover (%) Size Class Pebble Count Analyzer (p-value) Pool Spacing Ratio Pool Depth Ratio Percent Riffle (%) Aggradation Ratio Sinuosity E. Coli (Cfu/100 mL)					
		Concentrated Flow Points Bank Height Ratio Entrenchment Ratio Large Woody Debris Index # Pieces Erosion Rate (ft/yr) Dominant BEHI/NBS Percent Streambank Erosion (%) Percent Armoring (%) Left - Average DBH Right - Average DBH (in) Left - Buffer Width (feet) Right - Buffer Width (feet) Left - Tree Density (#/acre) Right - Tree Density (#/acre) Left - Native Herbaceous Cover (%) Right - Native Herbaceous Cover (%) Left - Native Shrub Cover (%) Right - Native Shrub Cover (%) Size Class Pebble Count Analyzer (p-value) Pool Spacing Ratio Pool Depth Ratio Percent Riffle (%) Aggradation Ratio Sinuosity E. Coli (Cfu/100 mL) Percent Nutrient Tolerant Macroinvertebrates (%) Nitrate-Nitrite (mg/L) Total Phosphorus (mg/L)					
		Entrenchment Ratio Large Woody Debris Index # Pieces Erosion Rate (ft/yr) Dominant BEHI/NBS Percent Streambank Erosion (%) Percent Armoring (%) Left - Average DBH Right - Average DBH (in) Left - Buffer Width (feet) Right - Buffer Width (feet) Left - Tree Density (#/acre) Right - Tree Density (#/acre) Left - Native Herbaceous Cover (%) Right - Native Herbaceous Cover (%) Right - Native Herbaceous Cover (%) Right - Native Shrub Cover (%) Size Class Pebble Count Analyzer (p-value) Pool Spacing Ratio Pool Depth Ratio Percent Riffle (%) Aggradation Ratio Sinuosity E. Coli (Cfu/100 mL) Percent Nutrient Tolerant Macroinvertebrates (%) Nitrate-Nitrite (mg/L) Total Phosphorus (mg/L)					
		Entrenchment Ratio Large Woody Debris Index # Pieces Erosion Rate (ft/yr) Dominant BEHI/NBS Percent Streambank Erosion (%) Percent Armoring (%) Left - Average DBH Right - Average DBH (in) Left - Buffer Width (feet) Right - Buffer Width (feet) Left - Tree Density (#/acre) Right - Tree Density (#/acre) Left - Native Herbaceous Cover (%) Right - Native Herbaceous Cover (%) Left - Native Shrub Cover (%) Size Class Pebble Count Analyzer (p-value) Pool Spacing Ratio Pool Depth Ratio Sinuosity E. Coli (Cfu/100 mL) Percent Nutrient Tolerant Macroinvertebrates (% Nitrate-Nitrite (mg/L)					
Geomorphology	Riparian Vegetation	Left - Tree Density (#/acre)					
Geomorphology	Riparian vegetation	Right - Tree Density (#/acre)					
		Left - Native Herbaceous Cover (%)					
		Right - Native Herbaceous Cover (%)					
		Bank Height Ratio Intrenchment Ratio International International Internati					
		Concentrated Flow Points Concentrated Flow Points Bank Height Ratio Entrenchment Ratio Entrenchment Ratio Enge Woody Debris Index # Pieces Erosion Rate (ft/yr) Dominant BEHI/NBS Percent Streambank Erosion (%) Percent Armoring (%) Eft - Average DBH Right - Average DBH (in) Eft - Buffer Width (feet) Right - Buffer Width (feet) Right - Buffer Width (feet) Right - Tree Density (#/acre) Right - Tree Density (#/acre) Right - Native Herbaceous Cover (%) Right - Native Herbaceous Cover (%) Right - Native Herbaceous Cover (%) Right - Native Shrub Cover (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
		Pool Spacing Ratio					
	Bed Form Diversity	Pool Depth Ratio					
	bearonn biversity	Percent Riffle (%)					
		Left - Native Herbaceous Cover (%) Right - Native Herbaceous Cover (%) Left - Native Shrub Cover (%) Right - Native Shrub Cover (%) on Size Class Pebble Count Analyzer (p-value) Pool Spacing Ratio Pool Depth Ratio Pool Depth Ratio Percent Riffle (%) Aggradation Ratio Sinuosity E. Coli (Cfu/100 mL) Percent Nutrient Tolerant Macroinvertebrates (%) Nitrate-Nitrite (mg/L)					
+	Plan Form						
	Bacteria						
Physicochemical	Organic Enrichment						
, inforce included	Nitrogen						
	Phosphorus						
	Macroinvertebrates						
Biology		Percent EPT - Cheumatopsyche (%)					
DIDIOEY							
	Fish						
		Catch per Unit Effort Score					



Biology and WQ Sampling Sites (75)

EcoMorph Sites (63)

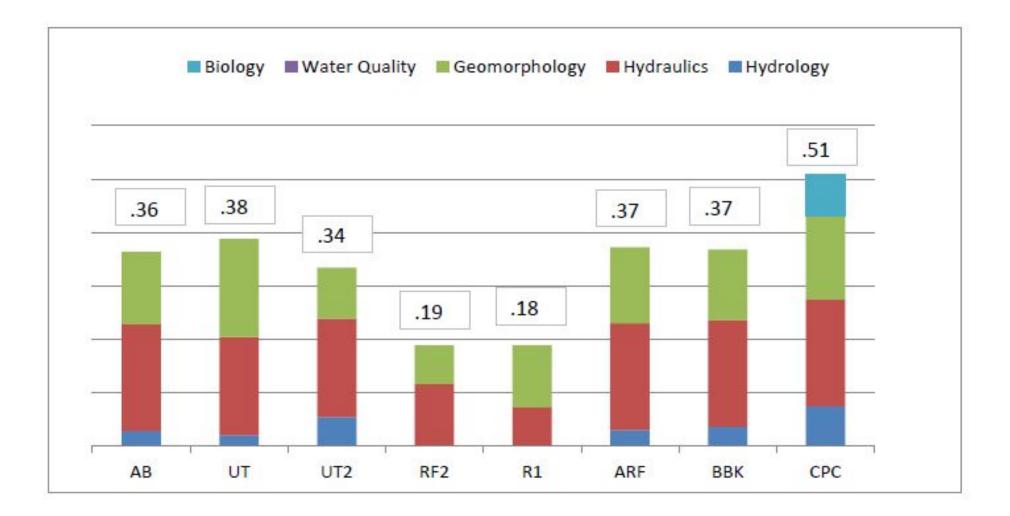
Bridging the Gap: tools into policy

- Crediting is easy-lift is lift
- Debits
- Transitioning
- Potential to change currency AND reduce mitigation requirement
- No net loss

Projects in the Pipeline

	GEORGIA ON MY MIND							
Reach	Existing Length	Proposed Length	Extra LF	Base Ratio	Ratio for Extra LF	Total Credits for Reach	Proposed FF - Existing FF	Functional Lift Score
AB	1316	1713	397	1.5	1.1	1238.2	677	0.36
BB	1631	2220	589	1.5	1.1	1622.8	904	0.37
EB	1834	2598	764	1.5	1.1	1917.2	1032	0.35
ARB	1347	1866	519	1.5	1.1	1369.8	763	0.37
CPC	6272	7215	943	1.5	1.1	5038.6	3812	0.51
FC	986	1340	354	1.5	1.1	979.2	427	0.25
24		97	07	a	TOTALS	12166	7615	
					(A)		AVERAGE	0.36833333

FORKS AND SPOONS


Reach	Existing Length	Proposed Length	Extra LF	Base Ratio	Ratio for Extra LF	Total Credits for Reach	Proposed FF - Existing FF	Functional Lift Score		
UT1	2509	3266	757	1.5	1.1	2360.8	1309	0.38		
UT2	492	841	349	1.5	1.1	645.3	321	0.34		
	Si		NG - 3	8	TOTALS	2361	1309			
					2002/00/00/00	57 SW2654 - 331	AVERAGE	0.3		

RAY OF SUNSHINE

Reach	Existing Length	Proposed Length	Extra LF	Base Ratio	Ratio for Extra LF	Total Credits for Reach	Proposed FF - Existing FF	Functional Lift Score
R1	5223	5223	0	3	1.1	1741.0	940	ERRORS
R2	1887	1887	0	4	1.1	471.8	245	ERRORS
R3	2666	2666	0	3	1.1	888.7	720	0.27
R4	1025	1365	340	3	1.1	650.8	423	0.29
R5	960	1260	300	3	1.1	592.7	256	0.38
R6	2932	3628	696	3	1.1	1610.1	718	ERRORS
10.00	20 0012-00	10000000		a - 20 - 1	TOTALS	5955	3302	States and the second
							AVERAGE	0.31333333

Proposed Lift

TN Debit Tool

- Debits will decrease
 - Proposed state rules establish existing condition
- Not all impacts are the same
- TDEC can't assess every impact site pre-impact
 - Standard Existing Condition Score (0.80)
 - Lower limit of ECS (0.40)

- Credits and debits need to be in the same currency
- Reporting and performance standards for all project types
- Biological assessments

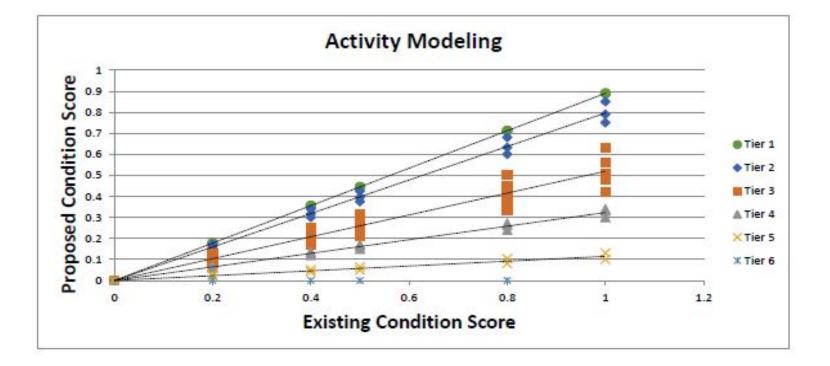
<u>Tier 5 –</u>This tier represents activities that result in a significant functional loss to most if not all stream resource values. Examples include but are not limited to:

- Pipe or 4-Sided Box Culvert: These pipes encapsulate the stream for greater than 200 linear feet either cumulatively or individually. Includes wingwalls, any energy dissipation device, u-shaped endwalls. All components attached to the pipe structure itself. Does not include riprap. Riprap at the upstream or downstream section of a pipe is calculated using the bed and/or bank armoring descriptions by tier. These structures may affect the channel at the crossing approaches when the activity requires reshaping this zone making the stream wider and potentially deeper. This activity eliminate most stream resource values and functions including riparian vegetation, macroinvertebrates and fish communities, water quality, floodplain connectivity, natural bedforms and lateral migration and eliminates hydrologic contributions from reach runoff.
- Channelization or Full Channel Armoring: Affects both banks for a distance of 200 feet or greater. Channels are lined along the bed and banks with concrete, grouted riprap, or concrete articulated mats. These streams are incised and alterations most likely include channel bank and potentially bed reshaping. The bed material is not suitable substrate for aquatic colonization and these channels will most likely be maintained in their current state. Vegetation in the near buffer zone is restricted and routinely eliminated.

Department c Environment <u>Tier 6</u> – This tier represents 100% functional loss of a stream's resource value. Conservat

Tier Functional Loss Description

- 0 No appreciable permanent loss of resource value
- 1 Minimal loss of resource value (stream function). Impacts to reach runoff, lateral migration and/or riparian vegetation. No appreciable impact to water quality, and macroinvertebrate and fish communities.
- 2 Partial loss of resource value (stream function). Impacts to reach runoff, lateral migration, bed form diversity, and riparian vegetation. No appreciable impact to water quality, and macroinvertebrate and fish communities.
- Permanent loss of some of resource value (stream function). Impacts to reach runoff, floodplain connectivity, lateral migration, riparian vegetation, and bed form diversity. May also include impacts to large woody debris. Minor impacts to water quality and moderate impacts to macroinvertebrate and fish communities.
- 4 Permanent loss of most of resource value (stream function). Impacts to reach runoff,
 floodplain connectivity, lateral migration, riparian vegetation, , and bed form
 diversity. May also include impacts to plan form and/or large woody debris.
 Significant impacts to water quality and macroinvertebrate and fish communities.
- 5 Permanent loss of most of resource value (stream function). Removal of all aquatic functions except for hydrology.


6 Total and permanent loss of all resource value (stream function). Complete elimination of all stream functions. Total loss of existing and potential function.

Impact Severity Tiers	Impact Factors	Percent Functional Loss
Tier 0	1.00	0%
Tier 1	0.89	11%
Tier 2	0.8	20%
Tier 3	0.52	48%
Tier 4	0.32	68%
Tier 5	0.12	80%
Tier 6	0.00	100%

Proposed Impact Factors and Activity Modeling:

graph represents combined data from modeling individual activities and the impact these actions have on stream resources. Table establishes tier, functional loss and the impact factor used to determine debits.

The Impact Factors were developed from linear regression equations of modeled impact scenarios using a simplified version of the SQT. Each impact type was described in detail and evaluated for stream resource values loss by the proposed activities. Using a simplified SQT, an individual impact factor was developed for each impact type. These types were grouped based on % functional loss (in clusters) and graphed in "tiers". A trendline was drawn and the slope of that line became the combined impact factor representing all activities within a given tier.

TN SQT DEBIT TOOL v1.0

DRAFT DELIBERATIVE, NOT TO BE RELEASED OUTSIDE THE AGENCY

Project ID:

Users Input Values

Users select values from a pull-down menu

Stream	Reach ID	Existing Length	ECS	Proposed Length	Impact Severity Tier	PCS	Change in FF
STR-1	Box culvert	26	0.8	26	Tier 5	0.10	-18.2
	riprap	65	0.8	65	Tier 3	0.42	-24.7
STR-2	Box culvert	142	0.8	142	Tier 5	0.10	-99.4
	riprap	42	0.8	42	Tier 3	0.42	-16.0
STR-3	Fill	221	0.8	221	Tier 6	0.00	-176.8
					Tier 6	0.00	0.0
					Tier 5	0.00	0.0
					Tier 4	0.00	0.0
					Tier 5	0.00	0.0
_					Tier 5	0.00	0.0
					Tier 0	0.00	0.0
				j j	Tier 0	0.00	0.0
					Tier 1	0.00	0.0
					Tier 2	0.00	0.0
					Tier 3	0.00	0.0
					Tier 4	0.00	0.0
					Tier 5	0.00	0.0
					Tier 6	0.00	0.0
					Tier 5	0.00	0.0
					Tier 4	0.00	0.0
					Tier 3	0.00	0.0
					Tier 2	0.00	0.0
					Tier 1	0.00	0.0
					Tier 0	0.00	0.0
					Tier 1	0.00	0.0
					Tier 2	0.00	0.0
				Tot	al Function	al Loss:	-335.1

Department Environm Conserva Name: Date:

Name: Date: TN SQT DEBIT TOOL v1.0

DRAFT DELIBERATIVE, NOT TO BE RELEASED OUTSIDE THE AGENCY

Project ID:

Users Input Values

Users select values from a pull-down menu

Stream	Reach ID	Existing Length	ECS	Proposed Length	Impact Severity Tier	PCS	Change in FF
STR-1	Box culvert	26	0.4	26	Tier 5	0.05	-9.1
	riprap	65	0.4	65	Tier 3	0.21	-12.4
STR-2	Box culvert	142	0.4	142	Tier 5	0.05	-49.7
	riprap	42	0.4	42	Tier 3	0.21	-8.0
STR-3	Fill	221	0.4	221	Tier 6	0.00	-88.4
					Tier 6	0.00	0.0
					Tier 5	0.00	0.0
					Tier 4	0.00	0.0
					Tier 5	0.00	0.0
					Tier 5	0.00	0.0
					Tier 0	0.00	0.0
					Tier 0	0.00	0.0
					Tier 1	0.00	0.0
				1	Tier 2	0.00	0.0
					Tier 3	0.00	0.0
					Tier 4	0.00	0.0
1	8				Tier 5	0.00	0.0
	8				Tier 6	0.00	0.0
					Tier 5	0.00	0.0
		() ()			Tier 4	0.00	0.0
					Tier 3	0.00	0.0
					Tier 2	0.00	0.0
		1			Tier 1	0.00	0.0
					Tier 0	0.00	0.0
					Tier 1	0.00	0.0
					Tier 2	0.00	0.0
				Tot	al Function	al Loss:	-167.5

Comparison of Permitted to Proposed

DEBITS								
2004 Standard	Draft 2018							
	ECS 0.80	ECS 0.50	ECS 0.40					
1140	588.64	367.98	293.32					
461	325.8	204	162.9					
2285	1643.3	1031.68	821.75					
310	240	150	120					
496	294.5	184.5	147.2					

Moving to a Draft TN Mitigation Guidelines

- Use TN SQT to assess established and proposed mitigation sites and compare to 2004 guidelines
- Use TN SQT to assess permitted impacts and compare debits
- MOU with USACE
- Draft Mitigation Guidelines- AUGUST 2018
 - TN Debit Tool
 - TN SQT
 - 3 User Manuals
- TRANSITION TRANSITION TRANSITION TRANSITION
 U.S. Department of Agriculture
 Natural Resources Conservation Service



DWR-Natural Resources Unit 615-253-5320

Development of an Interim Stream Quantification Tool for Georgia

Eric Somerville Oceans, Wetlands & Streams Protection Branch U.S. EPA Region 4

somerville.eric@epa.gov

Georgia Interim SQT, 2018

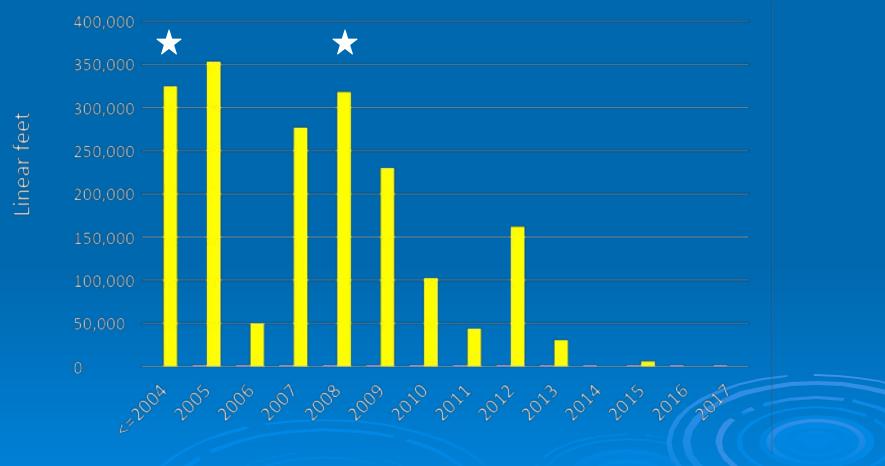

Not the "what," but the "why"

Photo: St. Mary's Fluvial Studies, https://sites.google.com/site/stmarysfluvialstudies/meanders-alice-emily

The following presentation is based solely on views of the author and is neither endorsed by, nor the official position of the U.S. Environmental Protection Agency.

Annual Approved Stream Mitigation in Georgia

Source: RIBITS, accessed 7/6/2018

Georgia Stream Mitigation Credits, 2004

STREAM CHANNEL RESTORATION, STREAM RELOCATION AND STREAMBANK										
RESTORATION WORKSHEET										
Net Benefit										
Monitoring/ Contingency						Excellent 1.0				
Priority Area						Primary 1.0				
Control										
Mitigation Timing										

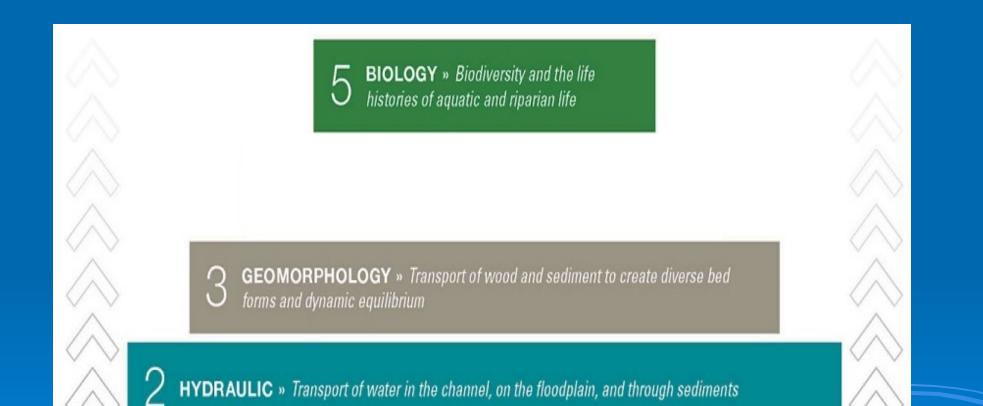
2008 Mitigation Rule:

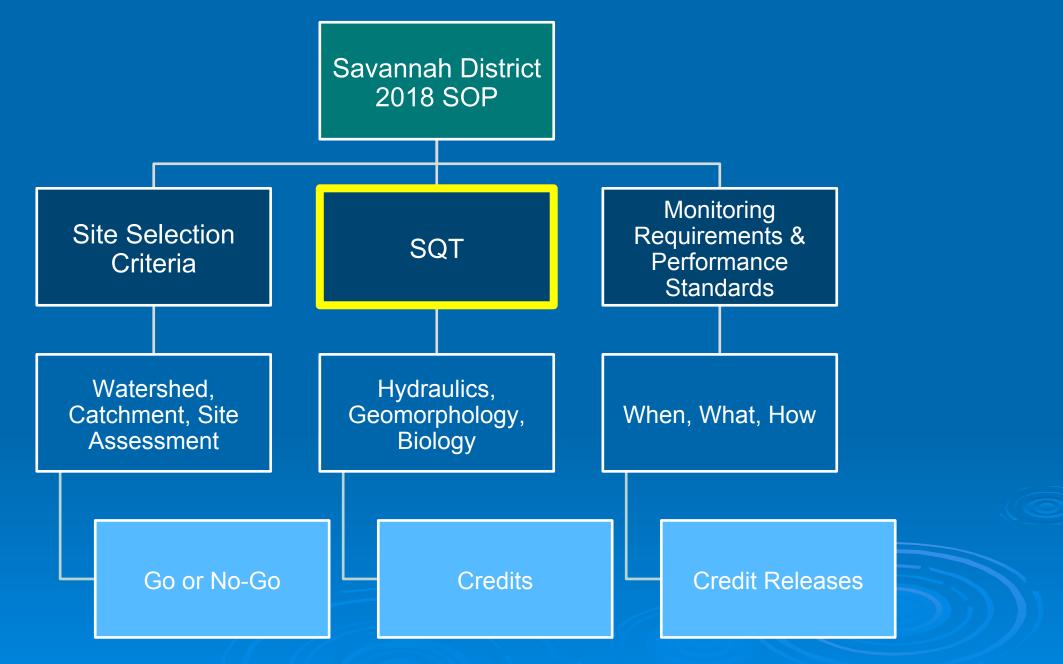
Mitigation objective

- Offset environmental losses resulting from unavoidable impacts to waters of the U.S.,
- Based on the lost aquatic resource functions,
 - ~must identify a target resource type & resource functions.

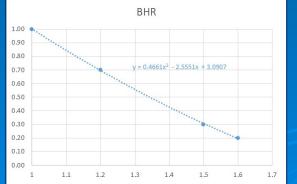
Ecological Performance Standards

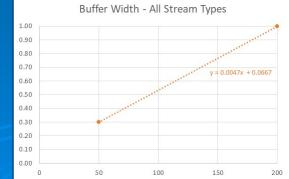
- Based on project objectives,
- Based on attributes that are objective and verifiable,
- Used to determine if the project is developing into the desired resource type & providing the <u>expected</u> <u>functions.</u>

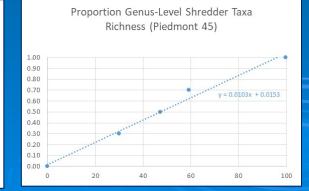

The SQT is here!! The SQT is here!!



Georgia Interim SQT


SQT vs "SQT Light"

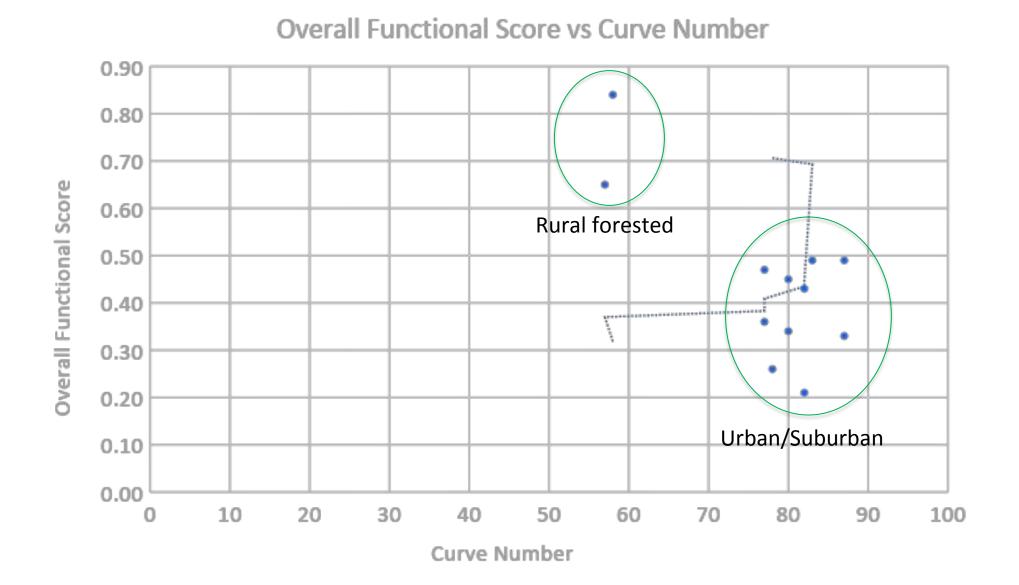




"Georgia SQT Light"

Functional Category Function-Based Paramete		Measurement Method			
Hudraulica	Floodplain Connectivity	Bank Height Ratio			
Hydraulics	Floodplain Connectivity	Entrenchment Ratio			
	Riparian Vegetation	Left Buffer Width (ft)			
	Riparian vegetation	Right Buffer Width (ft)			
Geomorphology		Pool Spacing Ratio			
	Bed Form Characterization	Percent Riffle			
		LWD Index			
		Proportion EPT Taxa Richness			
Pielogy	Macros	Proportion Clinger Taxa Richness			
Biology		Proportion Shredder Taxa Richness			
		Proportion Burrower Taxa Richness			

"As restoration science and practice develop, it is imperative that we examine and reexamine the assumptions and scientific evidence (or lack thereof) that underlie restoration efforts," -Margaret Palmer, 2009



Site	Watershed Type	Drainage Area (sq. mi)	Curve Number	Median particle	Slope (%)	Rosgen Stream Type
Austin Degraded	Suburban	3.8	78	Sand	0.39	G5c
Austin Restored	Suburban	8.5	83	Sand	0.19	C5
UT to Swift Degraded	Urban	0.5	82	Gravel	1.64	G4c
UT to Swift Restored	Urban	0.9	82	Gravel	0.30	C4
Irvin Degraded	Urban	0.6	77	Gravel	0.53	E4
Irvin Restored	Urban	1.0	77	Sand	0.57	C5
Purlear Degraded	Forested Rural	0.2	57	Gravel	2.10	E4b
Purlear Restored	Forested Rural	0.4	58	Gravel	4.60	C4b
Sandy Degraded	Urban	2.0	87	Sand	0.27	F5
Sandy Restored	Urban	1.8	87	Sand	0.23	E5b
Torrence Degraded	Suburban	0.8	80	Sand	0.62	G5c
Torrence Restored	Suburban	3.6	80	Sand	0.36	C5

	Functional Scores								
Site Name	Total QT	Hydrology	Hydraulics	Geomorp- hic	Physico-ch emical	Biology	% Shredders	IBI	EPT Richness
Austin Degraded	0.26	0.26	0.00	0.43	0.46	0.17	4.30	5.98	9
Austin Restored	0.49	0.31	0.88	0.42	0.49	0.35	3.10	5.48	11
UT to Swift Creek Degraded	0.21	0.27	0.00	0.38	0.42	0.00	0.00	8.17	8.43
UT to Swift Creek Restored	0.43	0.28	1.00	0.47	0.39	0.00	0.40	0	0
Irvin Degraded	0.36	0.39	0.71	0.17	0.40	0.12	0.02	6.05	2
Irvin Restored	0.47	0.32	1.00	0.56	0.39	0.06	0.03	6.49	4
Purlear Degraded	0.65	0.67	0.71	0.16	0.77	0.93	28.60	2.92	24
UT to Purlear Restored	0.84	0.68	0.92	0.77	0.85	1.00	27.10	2.03	32
Sandy Degraded	0.26	0.21	0.00	0.65	0.44	0.00	0.40	7.03	5
Sandy Restored	0.49	0.30	1.00	0.59	0.55	0.01	0.50	6.85	4
Torrence Degraded	0.34	0.25	0.00	0.30	0.54	0.59	0.00	4.58	13
Torrence Restored	0.45	0.27	0.82	0.43	0.55	0.20	0.01	5.78	8

Results

