

Simon Gregg, El, LEED Green Associate
Sarah Waickowski, El
William F. Hunt, III, PE, PhD, DWRE
Dept. of Biological and Agricultural Engineering
North Carolina State University

Background

- + innovative technique to convey and treat stormwater
- + sequence of grade control structures and pools + riffles, boulder-weirs, cascade
- + 80% sand 20% wood chip media to raise the stream bed
- + used to stabilize eroded gullies
- + promote infiltration & improve hyporheic interactions
- + guidance from Anne Arundel County, MD

Background

TREATMENT MECHANISMs

- + velocity reduction & settling
 - + Stoke's Law
- + media filtration & adsorption to organic matter
 - + Darcy's Law
 - + Cation Exchange Capacity
- + denitrification
- + biological uptake

Site Location

Site Description

Site Description

DRAINAGE AREAS

Dry Pond Secondary Inlet

7.2_{ha} 12.4_{ha}

Run-On

0.7_{ha}

COMPOSITE CN

85

Design Characteristics

+ total storage volume: 3.17-m³

+ 25-mm runoff volume: 876.07-m³

+ % sized 0.4%

+ Loading ratio: 25,000:1

Monitoring Design

EQUIPMENT

- + ISCO 6712 automated samplers
- + HOBO U20 water level loggers
- + HOBO manual & tipping bucket rain gauge
- + compound weirs w/ end contractions
- + interevent baseflow grab samples

Preliminary Results

83% VOLUME REDUCTION

192%
PEAK FLOW
INCREASE

Previous Research

+ 4 peer-reviewed articles

+ 5 reports of RSC performance

+ piedmont & coastal plains

+ drainage areas: 0.3 - 94-ha

+ loading ratios: 24 - 310:1

+ slopes: 0.8 - 12.5%

+ storage ratio: 0.42 - 3.34:1

+ SR = V_{surface} / V_{media} + inconsistency in methods, reporting, & analysis

Previous Research

- + potential for media clogging
- + media saturation limits available storage + trend of under sizing

DURHAM RSC

+10%
VOLUME
REDUCTION

21% PEAK FLOW REDUCTION

10%
TSS
REDUCTION

DURHAM RSC

4.4%

REDUCTION

6.8%

TP

REDUCTION

Previous Research

- + high media OM can leach TAN & TKN in interevent periods
 - + denitrification vs. DNRA
- + WQ performance scattered
 - + TSS: 30-70% reduction
 - + TN: 25-50% reduction
 - + TP: 30-70% reduction

WELL DRAINED RSCs

>80%
VOLUME
REDUCTION

>75%
PEAK FLOW
REDUCTION

ALAMANCE RSC

94%
TSS
REDUCTION

81%
TN
REDUCTION

84%
TP
REDUCTION

Recommendations

DESIGN VOLUME	+ 38-mm Coastal Plains; + 25-mm elsewhere	Koryto et al. (2017); Cizek et al. (2016); Koryto et al. (2018)
LOADING RATIO	+ 80 - 120:1; depends on storage demand	Koryto et al. (2017); Cizek et al. (2016); Koryto et al. (2018)
STORAGE RATIO	+ 0.5 - 1.5:1; lower ratios improve surface-to-seepage	Koryto et al. (2017); Cizek et al. (2016); Koryto et al. (2018); Cizek et al. (2017)
SLOPE	+ depends on site; steeper slopes require larger structures	Flores et al. (2012); Koryto et al. (2017); Cizek et al. (2016)
IN-STREAM STRUCTURES	+ larger in-stream structures improve hyporheic exchange	Hester & Doyle (2008)
CONSTRUCTION TECHNIQUES	+ gulley or exfiltration trench; rake subsoils; pool 1 forebay; SHWT	Cizek et al. (2016); Koryto et al. (2017); Brown & Hunt (2009); Filoso (2012); Hsieh & Davis (2005a); Hunt et al. (2006)
VEGETATION	+ yes; zone planting	Li et al., (2009); Wardynski & Hunt, (2012)
MEDIA	+ 80-85% coarse sand, 10-15% OM, 0-5% fines; P-index ≤ 30 in NSW P-index ≤ 50 elsewhere	Hunt et al. (2006); Hsieh & Davis (2005a); Koryto et al. (2017); Cizek et al. (2016)

Questions?

References

- + Brown, R. A., & Hunt, W. F. (2009). Effects of Media Depth on Bioretention Performance in the Upper Coastal Plain of North Carolina and Bioretention Construction Impacts Study. World Environmental and Water Resources Congress.
- + Cizek, A. R., Hunt, W. F., Winston, R. J., & Lauffer, M. S. (2017). Hydrologic Performance of Regenerative Stormwater Conveyance in the North Carolina Coastal Plain. Journal of Environmental Engineering, 143(9).
- + Cizek, A. R., Hunt, W. F., Winston, R. J., Waickowski, S., Narayanaswamy, K., & Lauffer, M. S. (2016). Water Quality and Hydrologic Performance of a Regenerative Stormwater Conveyance (RSC) in the Piedmont of North Carolina. Journal of Environmental Engineering.
- + Filoso, S. (2012). Assessing the Effectiveness of Regenerative Stormwater Conveyance in reducing Sediment and Nutrient Loads to Three Mid-River Creeks in the Severn River watershed, (410), 1–22.
- + Flores, H., Mcmonigle, D., & Underwood, K. (2012). Design Guidelines for Regenerative Step Pool Storm Conveyance.
- + Hester, E. T., & Doyle, M. W. (2008). In-stream geomorphic structures as drivers of hyporheic exchange. Water Resources Research, 44(3).
- + Hsieh, C., & Davis, A. P. (2005a). Evaluation and Optimization of Bioretention Media for Treatment of Urban Storm Water Runoff. Journal of Environmental Engineering, 131, 1521–1531.
- + Hunt, W. F., Jarrett, A. R. R., Smith, J. T., & Sharkey, L. J. (2006). Evaluating Bioretention Hydrology and Nutrient Removal at Three Field Sites in North Carolina. Journal of Irrigation and Drainage Engineering, 132(6).
- + Koryto, K. M., Asce, M., Hunt, W. F., Arellano, C., & Page, J. L. (2018). Performance of Regenerative Stormwater Conveyance on the Removal of Dissolved Pollutants: Field Scale Simulation Study, 144(6), 1–13.
- + Koryto, K. M., Hunt, W. F., & Page, J. L. (2017). Hydrologic and water quality performance of regenerative stormwater conveyance installed to stabilize an eroded outfall. Ecological Engineering, 108, 263–276.
- + Li, H., Sharkey, L. J., Asce, M., Hunt, W. F., Davis, A. P., & Asce, F. (n.d.). Mitigation of Impervious Surface Hydrology Using Bioretention in North Carolina and Maryland.
- + Wardynski, B. J., & Hunt, W. F. (2012). Are Bioretention Cells Being Installed Per Design Standards in North Carolina? A Field Study. Journal of Environmental Engineering, 138(12), 1210–1217.