

2D Hydraulic Modeling, Steering Stream Restoration Design

PREPARED FOR:

EcoStream 2018 Stream Ecology & Restoration Conference

Presented By: Matthew D. Gramza, P.E., CFM, CPESC Civil & Environmental Consultants, Inc.

August 16, 2018

Overview

Two-Dimensional Modeling Approach

EcoStream

Civil & Environmental Consultants, Inc

1D vs. 2D Modeling

Representative Projects Overview

Representative Projects Models

Two-Dimensional Modeling Approach

Hydraulic Modeling for Stream Design Utilizing GeoHEC-RAS 2D

- 2D hydrodynamic flow routing within unsteady flow analysis
- 1D, 2D or combined 1D/2D unsteady-flow routing
- 2D flow areas in HEC-RAS can be used in a number of ways
 - o Detailed 2D channel modeling
 - o Detailed 2D channel and floodplain modeling
 - Combined 1D channels with 2D floodplain areas
 - o Combined 1D channels with 2D flow behind levees
 - Directly connect a 2D flow area to 1D storage area with a hydraulic structure
 - Simplified to very detailed Dam Breach analyses

Two-Dimensional Modeling Approach

Hydraulic Modeling Utilizing GeoHEC-RAS 2D

Definitions

1D Modeling

Solves the fully dynamic St. Venant equations of conservation of mass and momentum along a <u>singular</u> dimension.

2D Modeling

Solves the fully dynamic St. Venant equations of conservation of mass and momentum along <u>two</u> dimensions.

Hydraulic Modeling Utilizing GeoHEC-RAS 2D

- 1D Advantages
 - Fewer geometric data are required
 - o Shorter computational time
 - Channel flows computed more efficiently
 - o Relatively smaller output files
- 2D Advantages
 - Flowpaths do not need to be predefined
 - o Provides realistic depiction of flow throughout a system
 - Perform 1D and 2D modeling within the same unsteady flow model allows users to model larger river systems, 1D where appropriate (main river) and 2D modeling in areas that require a higher level of hydrodynamics
 - o Flowpaths can change with flow depth
 - o Cross-momentum of flow splits is accounted for (significant for roadway crossing systems)
 - o Losses due to 2D effects (i.e. bends, flow separations, etc.) automatically included within computations
 - o Floodplain storage is implicitly defined
 - o Inputs and outputs can be defined spatially in GIS-type environments (better data continuity)
 - o Does not require extraction of cross sections from survey data
 - Detailed Flood Mapping and Flood Animations based on underlying terrain, each cell can be partially wet/dry reflected in the mapping and animations
 - o Can provide results directly for mapping flood extents and inundation depths, velocities, and safety hazards

Hydraulic Modeling Utilizing GeoHEC-RAS 2D

- When is 1D Okay
 - Locations where flow isn't required to spread (uni-directional flow)
 - Well-defined channel/overbank systems (defined valleys)
 - Simply-connected floodplains where flow in main channel is well connected to flow in the overbank and both are primarily uni-directional
 - o When elevation data of only limited quality/quantity are available
- When is 2D Preferable
 - Anywhere flow is expected to spread
 - o Urbanized Areas
 - Wide Floodplains
 - o Downstream of Levee Breaks
 - o Downstream of Upground Reservoir Breaks
 - Stream and Wetland Studies
 - Lake or Estuary Studies
 - Water Quality and Sediment Transport

Hydraulic Modeling Utilizing GeoHEC-RAS 2D

- 1D or 2D?
 - What is the length-to-width ratio of the project area? (> or < 3:1?)
 - Does the project have features that force flow to rapidly contract or expand?
 - Does the project have any features that redirect flow significantly (i.e. buildings)?
 - What kind of output animations are needed to convey the results to the stakeholders?

Sustainable Restoration Approach Hydraulic Modeling

- Floodplain Management & Permitting
- HEC-RAS 1D Flood Impact Analysis
- HEC-RAS 2D Stream Restoration Design
 - o In-Stream Structure Modeling (3D Objects)
 - Near Bank Shear Stress Management
 - o Floodplain Connectivity
 - o Stream and Wetland Complex Modeling
 - Velocity Particle Tracing
 - o Depth Grid Mapping

Sustainable Restoration Approach Hydraulic Modeling

2D Computational Mesh Optimization Tool (Adaptive Mesh)

Hydraulic Modeling Utilizing GeoHEC-RAS 2D

"All models are wrong, but some are useful." -George E. P. Box

"For every complex problem there is an answer that is clear, simple, and wrong."

-H.L. Mencken

UNT to Moock Road Pipeline Repair & Stream Restoration - City of Southgate, Campbell County, KY

20" NG Pipeline, 0.1 Sq. Mi. Drainage Area, 2,500 If Stream Restoration, Headwater Stream

UNT to Moock Road Pipeline Repair & Stream Restoration

- Upstream Pipeline Crossing

UNT to Moock Road Pipeline Repair & Stream Restoration

- Downstream Pipeline Crossing

UNT to Moock Road Pipeline Repair & Stream Restoration

- Downstream Pipeline Crossing

UNT to Moock Road Pipeline Repair & Stream Restoration

- Downstream Pipeline Crossing

Project Models

Civil & Environmental Consultants, Inc.

Civil & Environmental Consultants, Inc.

Construction Time-Lapse Video

Summary

If you build it...

it will come...

Thank You Matt Gramza, P.E., CFM, CPESC Senior Project Manager - Civil & Environmental Consultants, Inc. mgramza@cecinc.com | P: 513.985.0226

