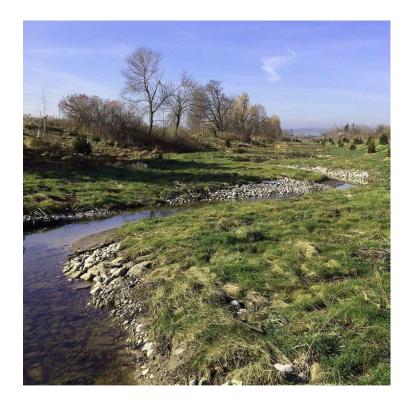

Stantec

EcoStream Conference, Asheville, NC August 14-16, 2018

Stream Restoration and Fish Habitat Banking in Canada



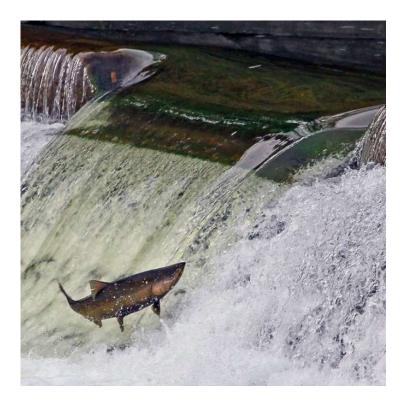
Agenda

- 1. Background
- 2. Functional Assessment
- 3. Calculating Fish Habitat
- 4. Case Studies

Background

Background

- USEPA Clean Water Act
- Federal Department of Fisheries and Oceans – Fisheries Act


Federal Fisheries Act

- Fish
- Fish Habitat
- \$5M and/or Jail Time
- Authorization
- Offsetting/Compensation = Restoration

Federal Fisheries Act

- Rewritten in 2009
- Policy changes to allow habitat banking
- Habitat banking arrangement:
 - Signed by proponent and DFO
 - Type of bank (e.g., warmwater)
 - Service area
 - Credit release schedule
- 2 fish habitat banks (Kitchener, London)

Functional Assessment

Functional Assessment

Developed by DFO and Stantec:

- Geomorphology
- Vegetation
- Benthics
- Fish

Geomorphology

- Rapid Geomorphic
 Assessment
- Ratio of Riffle Length to Pool Ratio
- Ratio of Riffle-Depth
 to Pool Depth
- Survey (e.g., Xsections, long pro, pebble counts)

STANIEC C	UNSUL.	ING LIMITED	KAPID G	FOWOR	PHIC AS	SESSMENT
Watercourse: Location: FORM/ GEOM		laizer Creek Date		May 17, 2017		
		Kitchener, downstream of Homer Watson Blvd.	Reach:	2a		
		ORPHIC INDICATOR		PRE	SENT	FACTOR
PROCESS		DESCRIPTION (3)		NO (4)	YES (5)	VALUE (6
Evidence of	1	Lobate bar		S.	Х	
Aggradation (AI)	2	Coarse material in riffles embedded			Х	
	3	Siltation in pools		1	Х	
	4	Medial bars		S	х	
	5	Accretion on point bars		S.	Х	
	6	Poor longitudinal sorting of bed materials			X	
	7	Deposition in overbank zone			Х	
	20	SUM OF INDICES		0	7	1.0
Evidence of	1	Exposed bridge footings		х	S	
Degradation (DI)	2	Exposed sanitary/storm sewer/pipeline/etc.		х	1	
	3	Elevated stormsewer outfall(s)		X	1	
	4	Undermined gabion baskets/concrete aprons/etc.		X	6 6	-
	5	Scour pools d/s of culverts/stormwater outlets		x	12 6	
	6	Cut face on bar forms		X	8 8	
	7	Head cutting due to knick point migration		X	2	
	8	Terrace cut through older bar material		X	<u>8 8</u>	
	9	Suspended armour layer visible in bank		X	8 8	
	10	Channel worn into undisturbed overburden/bedrock		X	18 - 18 18	
		SUM OF INDICES		10	0	0.0
Evidence of Widening (WI)	1	Fallen/leaning trees/fence posts/ect.		X	0 5	1000
	2	Occurrence of large organic debris		x	<u> </u>	
	3	Exposed tree roots		X	8	-
	4	Basal scour on inside meander bends		X	8 6	
	5	Basal scour on both sides of channel through riffle		x	8 S	
	6	Gabion baskets/concrete walls/ect. out flanked		~	x	
	7	Length of basal scour > 50% through subject reach		84	X	-
	8	Exposed length of previously buried pipeline/cable/ect.	-	x		-
	9	Fracture lines along top of bank	-	x	8 8	
	10	Exposed building foundation		N/A	22 (A	
	10	SUM OF INDICES		7	2	0.2
Evidence of	1	Formation of chutes		-	х	
Planimetric	2	Single thread to multiple channel		8	X	-
Form	3	Evolution of pool-riffle form to low bed relief form		x	1000	
Adjustment	4	Cutoff channel(s)			x	
(PI)	5	Formation of island(s)		90.	x	
	6	Thalweg alignment out of phase with meander form		<u>0</u>	x	
	7	Bar forms poorly formed/reworked/removed		83	x	
	A	SUM OF INDICES		1	6	0.8
STADILITY	DEV (SI = (AI + DI + WI + PI)/m		8. 85	1 ×	0.5

Vegetation

- Survival rates for planted floodplain vegetation
- Vegetation coverage of stream banks

Benthic Invertebrates

- Shannon Weiner Diversity Index
- Hilsenhoff Biotic
 Index
- Percent EPT
- Taxa Richness

Fish

Index of Biological Integrity:

- Species Richness
- Local Indicator Species
- Trophic Composition
- Fish Abundance

Calculating Fish Habitat Credits

Calculation

- Calculate the maximum fish habitat area based on ¹/₂ bankfull area
- Do the field work and then convert the Geomorphic, Vegetation, Benthic and Fish Scores to a % of 1
- Calculate the reach score:

```
Reach \, Score = \frac{Geomorphic \, Score + Vegetation \, Score + Benthic \, Invertebrate \, \, Score + Fish \, Community \, Score + Fish
```

 Multiply Reach Score by ½ bankfull area to get m² of fish habitat credits

Case Studies

Case Studies

- Filsinger
- Balzer
- Idlewood
- Mathers
- Tributary C

Case Study

Filsinger

- Naturalization of 2.0 km of concrete lined channel
- 0 m² of existing fish habitat
- 12,600 m² of warmwater fish habitat
- Used to develop the first fish habitat bank

Case Study

Balzer

- Restoration of 800 m of degraded urban channel
- Badly overwidened used Regional curve to determine bankfull width
- 1,438 m² of warmwater fish habitat credits

Idlewood Creek

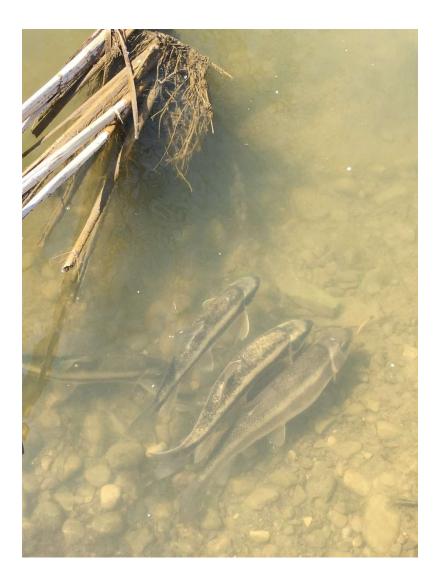
- Removal of two dams and gabion channel
- Restoring upstream fish passage
- ¼ bankfull area upstream of dam
- 4,600 m² of coolwater fish habitat credits

Case Study

Mathers

- Daylighting 800 m of stream channel
- 0 m² existing fish habitat
- 1,900 m² of warmwater habitat credits

Case Study


Tributary C

- Restoration of 330 m of degraded channel and removal of fish passage barrier
- Some existing fish habitat
- Potential for 490 m² of warmwater fish habitat

Status

- 2 fish habitat banks up and running
- 7 more to come
- Proponent banks
- Methodology needs refinement
- 3rd Party Banking not resolved
- DFO is supporting habitat banking

Lessons Learned

- DFO supports fish habitat banking (e.g., written into the new Fisheries Act)
- DFO is open to ideas (e.g., methodology, post-construction monitoring)
- Rules have not yet been written
- Some design philosophies are better suited to fish habitat banking than others
- Some sites are better suited to fish habitat banking that others: (e.g., Concrete-lined or piped channels represent the best sites)

Summary

Summary

- Fisheries Act is driving force behind stream restoration
- Fish habitat banking is new in Canada
- First fish habitat bank done in 2017
- Methodology based on functional assessment including quantitative data for geomorphology vegetation, benthics and fish
- Opportunities to refine methodology
- Need to address 3rd Party Banking

Questions?

Mr. Brad Fairley, MES Stream Restoration Service Leader, Canada Stantec Consulting Ltd. Tel.: (519) 585-7449 brad.fairley@stantec.com