Evaluating the ecological function of restored streams in Piedmont, North Carolina using the SQT

Sara Donatich¹, Barbara Doll¹, & Jonathan Page¹

¹ NC State University

August 16th 2018

NC STATE UNIVERSITY Objective

Research questions

Does the NC SQT **accurately detect and quantify** ecological function?

What is the **natural performance range** for ecological function variables in Piedmont streams?

Does the **stream functions pyramid framework** (embedded in SQT) apply to all **stream conditions?**

Which ecological function variables **correlate** best with **good biological** condition?

NC STATE UNIVERSITY Study Design

Site Location Map

- DEQ DMS geomorphic reference sites (n=18) [funded by NC DEQ DMS]
- DEQ DWR biological reference sites (n=2)
- Paired restored & degraded sites (n=12; 6 pairs) [funded by EDF]

NC STATE UNIVERSITY Study Design

Site Selection Criteria

NC STATE UNIVERSITY Methods

Data Collection

Functional Category	Measurement Method	Functional Category	Measurement Method
Hydrologic	Curve Number No. of Concentrated Flow Points Soil Compaction (Penetrometer) Soil Compaction (Bulk Density)	Physico-chemical Biological	Daily Maximum Summer Temperature (°F) Dissolved oxygen (mg/L)
Hydraulic	Bank Height Ratio Entrenchment Ratio		Specific Conductivity (mS/cm) pH
	LWD Index LWD Piece Count Dominant BEHI/NBS Percent Streambank Erosion (%) Canopy Coverage (%)		Salinity (ppt) Total Nitrogen (mg/L) Total Phosphorus (mg/L) Fecal Coliform (Cfu/100 ml) % Shredders
Geomorphic	Buffer Width (ft) Basal Area (sq. ft/acre) Pool Spacing Ratio		NC Index of Biotic Integrity for Macroinvertebrates EPT Taxa Present
	Pool Depth Ratio Percent Riffle Sinuosity		Watershed Catchment Assessment

NC STATE UNIVERSITY Methods

Site 1: Austin Creek

- Wake Forest, Wake County
- Suburban watershed
- Restoration completed in 2002
- Restoration objectives:
 - stabilize banks via channel reconfiguration
 - floodplain reconnection
 - establish native riparian vegetation
 - improve natural aesthetics ¹

	Degraded	Restored
Drainage Area (sq. mi)	3.8	8.5

Upstream
Degraded Reach

¹ Smith and Austin Creek Stream Mitigation Plan, 2003

Site 1: Austin Creek

Wake Forest, Wake County

Suburban watershed

Drainage Area (sq. mi)	Curve Number	Median Particle	Slope (%)	Rosgen Stream Type
3.8	78	Sand	0.39	G5c
8.5	83	Sand	0.19	C5

Site 1: Austin Creek

NC STATE UNIVERSITY Background

Site 2: UT to Swift Creek

- Cary, Wake County
- Suburban watershed
- Restoration completed in 2012
- Restoration objectives:

Improve water quality by:

- establishing floodplain
- riparian buffer planting
- stabilizing banks
- improving aquatic habitat ²

	Degraded	Restored
Drainage Area (sq. mi)	0.5	0.9

² UT to Swift Creek Restoration Monitoring Report Year 1, 2014

Site 2: UT to Swift Creek

Cary, Wake County

Drainage Area (sq. mi)	Curve Number	Median Particle	Slope (%)	Rosgen Stream Type
0.5	82	Gravel	1.64	G4c
0.9	82	Gravel	0.30	C4

Site 2: UT to Swift Creek

NC STATE UNIVERSITY Background

Site 3: Irvin Creek

- Reidsville, Rockingham County
- Urban watershed
- Restoration completed in 2011
- Restoration objectives:
 - stabilize banks
 - floodplain reconnection
 - reduce nutrient levels, sediment input, and water temperature
 - increase dissolved oxygen
 - create in-stream habitat
 - decrease channel velocities³

	Degraded	Restored
Drainage Area (sq. mi)	0.6	1.0

³ Little Troublesome Creek Mitigation Plan Monitoring Year 1 Annual Report, 2013

Site 3: Irvin Creek

Reidsville, Rockingham County

Urban watershed

Drainage Area (sq. mi)	Curve Number	Median Particle	Slope (%)	Rosgen Stream Type
0.6	77	Gravel	0.53	E4
1.0	77	Sand	0.57	C5

Site 3: Irvin Creek

NC STATE UNIVERSITY Background

Site 4: Purlear Creek and UT to Purlear Creek

- Purlear, Wilkes County
- Rural Forested watershed
- Restoration completed in 2006
- Restoration objectives:
 - improve water quality by reducing sediment and nutrients
 - improve aquatic and terrestrial habitat for cold-water fish, mammals, birds
 - improve wetland functions to support bog turtle habitat

	Degraded	Restored
Drainage Area (sq. mi)	0.2	0.4

Site 4: Purlear and UT to Purlear Creek

Purlear, Wilkes County

Rural forested watershed

Drainage Area (sq. mi)	Curve Number	Median Particle	Slope (%)	Rosgen Stream Type
0.2	57	Gravel	2.10	E4b
0.4	58	Gravel	4.60	C4b

Site 4: Purlear and UT to Purlear Creek

NC STATE UNIVERSITY Background

Site 5: Sandy Creek

- Durham, Durham County
- Suburban watershed
- Restoration completed in 2005
- Restoration objectives:
 Improve water quality by:
 - floodplain reconnection
 - riparian vegetation replanting⁴

	Degraded	Restored
Drainage Area (sq. mi)	2.0	1.8

⁴ Final Report of Scientific Findings to NCDENR, 2008

Site 5: Sandy Creek

Durham, Durham County

Urban watershed

Drainage Area (sq. mi)	Curve Number	Median Particle	Slope (%)	Rosgen Stream Type
2.0	87	Sand	0.27	F5
1.8	87	Sand	0.23	E5b

Site 5: Sandy Creek

NC STATE UNIVERSITY Background

Site 6: Torrence Creek

- Huntersville, Mecklenburg County
- Suburban watershed
- Restoration completed in 2013
- Restoration objectives:
 - Bank stabilization to reduce sediment loads from bank erosion

	Degraded	Restored
Drainage Area (sq. mi)	0.8	3.6

Site 6: Torrence Creek

Huntersville, Mecklenburg County

Suburban watershed

Drainage Area	Curve Number	Median Particle	Slope (%)	Rosgen Stream
(sq. mi)				Type
0.8	80	Sand	0.62	G5c
3.6	80	Sand	0.36	C5

Site 6: Torrence Creek

Functional Change Summary

Site	Overall Functi	Functional Lift	
Austin Creek	Not Functioning [0.26]	Functioning-At-Risk [0.49]	0.23
UT to Swift Creek	Not Functioning [0.21]	Functioning-At-Risk [0.43]	0.22
Irvin Creek	Functioning-At-Risk [0.36]	Functioning-At-Risk [0.47]	0.11
Purlear and UT to Purlear Creek	Functioning-At-Risk [0.65]	Functioning [0.84]	0.19
Sandy Creek	Not Functioning [0.27]	Functioning-At-Risk [0.49]	0.22
Torrence Creek	Functioning-At-Risk [0.34]	Functioning-At-Risk [0.45]	0.11

Paired Restored and Degraed Sites

General Insights

- SQT functional scores reflect perceived stream condition
- Restored sites exhibit functional lift
 - Lift largely due to improved hydraulic and geomorphic function addressed via restoration
- Geomorphology category may be diluted
 - Improvement in structural function is negated by low-scoring, postrestoration vegetation function
 - Incentivizes monitoring
- Regionalization is critical to capture diverse stream systems
 - Sand-bedded systems are ripple-dune-run systems; minimal riffles naturally
 - Percent riffle metric currently lumps run and riffle lengths together

NC STATE UNIVERSITY Study Design

On-going Work

Data Collection & Analysis

- NC DEQ DMS geomorphic reference reaches (funded by DMS)
- NC DEQ DWR biology reference reaches
- Paired restored & degraded rural agricultural reaches

NC STATE UNIVERSITY

Site	Watershed Type	Drainage Area (sq. mi)	Curve Number	Median particle	Slope (%)	Rosgen Stream Type
Austin Degraded	Suburban	3.8	78	Sand	0.39	G5c
Austin Restored	Suburban	8.5	83	Sand	0.19	C5
UT to Swift Degraded	Urban	0.5	82	Gravel	1.64	G4c
UT to Swift Restored	Urban	0.9	82	Gravel	0.30	C4
Irvin Degraded	Urban	0.6	77	Gravel	0.53	E4
Irvin Restored	Urban	1.0	77	Sand	0.57	C5
Purlear Degraded	Forested Rural	0.2	57	Gravel	2.10	E4b
Purlear Restored	Forested Rural	0.4	58	Gravel	4.60	C4b
Sandy Degraded	Urban	2.0	87	Sand	0.27	F5
Sandy Restored	Urban	1.8	87	Sand	0.23	E5b
Torrence Degraded	Suburban	0.8	80	Sand	0.62	G5c
Torrence Restored	Suburban	3.6	80	Sand	0.36	C5

	Functional Scores								
Site Name	Total QT	Hydrology	Hydraulics	Geomorp- hic	Physico- chemical	Biology	% Shredders	IBI	EPT Richness
Austin Degraded	0.26	0.26	0.00	0.43	0.46	0.17	4.30	5.98	9
Austin Restored	0.49	0.31	0.88	0.42	0.49	0.35	3.10	5.48	11
UT to Swift Creek Degraded	0.21	0.27	0.00	0.38	0.42	0.00	0.00	8.17	8.43
UT to Swift Creek Restored	0.43	0.28	1.00	0.47	0.39	0.00	0.40	0	0
Irvin Degraded	0.36	0.39	0.71	0.17	0.40	0.12	0.02	6.05	2
Irvin Restored	0.47	0.32	1.00	0.56	0.39	0.06	0.03	6.49	4
Purlear Degraded	0.65	0.67	0.71	0.16	0.77	0.93	28.60	2.92	24
UT to Purlear Restored	0.84	0.68	0.92	0.77	0.85	1.00	27.10	2.03	32
Sandy Degraded	0.26	0.21	0.00	0.65	0.44	0.00	0.40	7.03	5
Sandy Restored	0.49	0.30	1.00	0.59	0.55	0.01	0.50	6.85	4
Torrence Degraded	0.34	0.25	0.00	0.30	0.54	0.59	0.00	4.58	13
Torrence Restored	0.45	0.27	0.82	0.43	0.55	0.20	0.01	5.78	8

