# Using Aerial LiDAR to Assess Stream Restoration Project Sites 

EcoStream 2018 Conference - Asheville, NC

Presented By
Marla Denicola

August 16, 2018

## Overview

- What is LiDAR?
- Where can I find publically available LiDAR?
- How can I process LiDAR?

How can I use LiDAR to assess stream restoration project sites?

## What is LiDAR?

- Light Detection and Ranging = LiDAR
- Aerial LiDAR

Scanning (ALS)

The IMU (inertial measurement unit) gives the precise orientation of the scanner

The laser scanner emits infrared pulses which reflect off the surface of the earth and objects on it. The returned pulses are captured and recorded.


## Uses of LiDAR

- Highly detailed maps of topography
- Identify anthropogenic disturbances in watershed
- Identify landslides that could impact restoration
- Identify areas of erosion within watershed
- Identify areas that may need special consideration during fieldwork

Create surfaces for design purposes

## Where to Find Public Available LiDAR

- A google search is going to be your best friend for finding data

USGS - The National Map
(https://viewer.nationalmap.gov/basic/)
Open Topography (https://opentopography.org/)
GIS Data Clearinghouses

- Often hosted by a university, state or county agency


## Public Available LiDAR

LiDAR is not available everywhere
Some states have statewide LiDAR
Some states only have LiDAR for specific areas
LiDAR data can vary in resolution
-Sub-meter resolution to 5 meter resolution

## Types of LiDAR Data

- Comprehensive Digital Elevation Model (DEM)
- Includes all returns


## Bare Earth DEM

- All returns removed except for ground returns
- When it comes to DEMs this is what you want


## LAS files

- Point cloud that includes all data points
- Can be filtered
- This is the ultimate dataset if you can process it

How to Process LAS files


| browse $\ldots$ | + |
| :--- | :--- |
| $\square$ filter $\ldots$ | + |

transform .
projection
overlays ...
LAS version: $1 \times$
source ID: created
\# points:
point type: point size:

## compression:

\# VLRs:
global_encoding: header size: offset: \# of 1st returns: \# of 2nd returns \# of 3rd returns: \# of 4th returns: \# of 5th returns: offset $x y z$ : scale $x y z$
no projection
$\rightarrow \square$
$\qquad$

M $\square$ Zoom $\square$

upper right $x=0$ $\square$ $\frac{\text { use square tile }}{\text { tile size: } \sqrt{1000}}$

## LAS files are often compressed into LAZ files

- Free software is needed to extract the LAS data
- LASzip or LAStools can be used to extract data (https://rapidlasso.com/ laszip/)


## How to Process LAS files


(1) Data Comparison

8 Distributed Geodatabase
Domains
8. Feature Class

Features
Fields
File Geodatabase
8. General

Generalization
Geodatabase Administration
Graph
Indexes
Joins

- LAS Dataset


## ArcMap is used to process the data

- Open Source GIS programs and AutoCAD can also be used but with potentially different results
- ArcToolbox > Data Management Tools > LAS Dataset > Create LAS Dataset


## LAS Dataset

## Choose LAS files

- Use appropriate coordinate system
- Found in metadata Best practice to compute statistics and store relative paths

Specifies whether lidar files and surface constraint features will be referenced by the LAS dataset through relative or absolute paths Using relative paths may be convenien por cases its associated data will be its associated data will be relocated in the file syste location to one another

- UncheckedAbsolute paths will be used for the data be used for the da LAS dataset. This is the default.
- Checked-Relative paths will be used for the data referenced by the LAS dataset.


## Unfiltered LAS Dataset




## Filter LAS Dataset

## Filter LAS dataset within layer properties <br> - Choose ground classifications <br> - Choose Model Key/Reserved if available



## Filtered "Bare Earth" LAS Dataset



## Convert Filtered LAS Dataset to Raster

## - ArcMap > ArcToolbox <br> > Conversion Tools > <br> To Raster > LAS <br> Dataset to Raster

## Convert Filtered LAS Dataset to Raster

- Input filtered LAS Dataset
- Use Triangulation Interpolation Method
- Linear Interpolation Method is quickest
- Nearest Neighbor Interpolation Method is more accurate
- No Thinning of points
- Output Datatype is Float
- Sampling Type is Cell Size
- Sampling Value and Z Factor should be 1
- This process can take a while
- Output raster may be very large



## Bare Earth DEM

- Create a slope map of the DEM
- Allows for close examination of dataset



## Bare Earth DEM

## West Virginia LiDAR

- Created from

Bare Earth DEM


## Bare Earth DEM

## South Carolina LiDAR

- Created from filtered LAS Dataset



## Bare Earth DEM



Indiana LiDAR

- Created from filtered LAS Dataset


## Using LiDAR Slope Map



## Using DEM to Create Flow Accumulation Grid

## ArcToolbox＞

 Spatial Analyst＞ Hydrology－Bare Earth DEM is used to create a Fill raster
－Fill raster is used to create a Flow Direction raster
－Flow Direction raster is used to create a Flow Accumulation

## Understanding a Flow Accumulation Grid

- Flow accumulation raster represents the number of cells that flow to a particular cell

The processing gets more complicated from here

- You need to have a basic understanding of map algebra
- I convert my flow accumulation grid from number of cells to square miles to better understand drainage area
- You could also make an excel "calculator" to convert number of cells to square miles


## Understanding a Flow Accumulation Grid

## Basic steps to convert flow accumulation grid from number of cells to square miles

- Cell Size (ex. $1 \mathrm{ft}^{2}$ )
- Area of a cell converted to $\mathrm{mi}^{2}$ - multiply flow accumulation by this number
- $1 \mathrm{ft}^{2}$ is equal to $0.00000003587006 \mathrm{mi}^{2}$
- ArcToolbox > Spatial Analyst > Map Algebra > Raster Calculator


*floacc1**0.00000003587006

Output raster
Һ:\Users\mdenicola \Documents\ArcGIS\Default.gdb\floaccmi2

## Understanding Flow Accumulation Grid

## Change symbology of flow accumulation grid to fine tune the drainage area thresholds



## Flow Accumulation Grid

- Ideal for smaller tributaries

Not ideal for large rivers

- HUGE raster needed to calculate drainage area
- Use in combination with USGS StreamStats for large rivers
Great for planning design parameters based on drainage area
- Excellent resource for planning delineations and estimated linear footage of stream on a project site



## Conclusions

- Public available LiDAR is usually found as bare earth DEMs or LAS files
- Bare Earth DEMs can be used with little to no processing
- LAS files require careful processing
- Bare Earth DEMs can be used to:
- Identify various landforms or surficial geology
- Areas of erosion
- Anthropogenic disturbances
- Create flow accumulation grids
- Use for design purposes
- Etc. - the possibilities go on and on


## Questions?

## Connect with us!

## infly

www.cecinc.com

