Using Aerial LiDAR to Assess Stream Restoration Project Sites

EcoStream 2018 Conference – Asheville, NC

Presented By

Marla Denicola

August 16, 2018

Overview

- What is LiDAR?
- Where can I find publically available LiDAR?
- How can I process LiDAR?
- How can I use LiDAR to assess stream restoration project sites?

What is LiDAR?

- Light Detection and Ranging = LiDAR
- Aerial LiDARScanning (ALS)

Uses of LiDAR

- Highly detailed maps of topography
- Identify anthropogenic disturbances in watershed
- Identify landslides that could impact restoration
- Identify areas of erosion within watershed
- Identify areas that may need special consideration during fieldwork
- Create surfaces for design purposes

Where to Find Public Available LiDAR

- A google search is going to be your best friend for finding data
- USGS The National Map (https://viewer.nationalmap.gov/basic/)
- Open Topography (https://opentopography.org/)
- GIS Data Clearinghouses
 - Often hosted by a university, state or county agency

Public Available LiDAR

- ► LiDAR is not available everywhere
- Some states have statewide LiDAR
- Some states only have LiDAR for specific areas
- LiDAR data can vary in resolution
 - Sub-meter resolution to 5 meter resolution

Types of LiDAR Data

- Comprehensive Digital Elevation Model (DEM)
 - Includes all returns
- Bare Earth DEM
 - All returns removed except for ground returns
 - When it comes to DEMs this is what you want
- LAS files
 - Point cloud that includes all data points
 - Can be filtered
 - This is the ultimate dataset if you can process it

How to Process LAS files

LAS files are often compressed into LAZ files

- Free software is needed to extract the LAS data
- LASzip or LAStools can be used to extract data (<u>https://rapidlasso.com/laszip/</u>)

How to Process LAS files

- ArcMap is used to process the data
 - Open Source GIS programs and AutoCAD can also be used but with potentially different results
- ArcToolbox > Data Management Tools > LAS Dataset > Create LAS Dataset

LAS Dataset

- Choose LAS files
- Use appropriate coordinate system
 - Found in metadata
- Best practice to compute statistics and store relative paths

Unfiltered LAS Dataset

Filter LAS Dataset

- Filter LAS dataset within layer properties
 - Choose ground classifications
 - Choose Model Key/Reserved if available
 - This classification is typically surveyed ground control points

Filtered "Bare Earth" LAS Dataset

Convert Filtered LAS Dataset to Raster

ArcMap > ArcToolbox
Conversion Tools >
To Raster > LAS
Dataset to Raster

Convert Filtered LAS Dataset to Raster

- ► Input filtered LAS Dataset
- Use Triangulation Interpolation Method
 - Linear Interpolation Method is quickest
 - Nearest Neighbor Interpolation Method is more accurate
 - No Thinning of points
- Output Datatype is Float
- Sampling Type is Cell Size
- Sampling Value and Z Factor should be 1
- This process can take a while
- Output raster may be very large

- Create a slope map of the DEM
- Allows for close examination of dataset

West Virginia LiDAR

 Created from Bare Earth DEM

South Carolina LiDAR

 Created from filtered LAS Dataset

Indiana LiDAR

 Created from filtered LAS Dataset

Using LiDAR Slope Map

Using DEM to Create Flow Accumulation Grid

- ArcToolbox > Spatial Analyst > Hydrology
 - Bare Earth DEM is used to create a Fill raster
 - Fill raster is used to create a Flow Direction raster
 - Flow Direction raster is used to create a Flow Accumulation

Understanding a Flow Accumulation Grid

- ► Flow accumulation raster represents the number of cells that flow to a particular cell
- The processing gets more complicated from here
 - You need to have a basic understanding of map algebra
- ► I convert my flow accumulation grid from number of cells to square miles to better understand drainage area
 - You could also make an excel "calculator" to convert number of cells to square miles

Understanding a Flow Accumulation Grid

- Basic steps to convert flow accumulation grid from number of cells to square miles
 - Cell Size (ex. 1 ft²)
 - Area of a cell converted to mi² multiply flow accumulation by this number
 - o 1 ft² is equal to 0.0000003587006 mi²
 - ArcToolbox > Spatial Analyst > Map Algebra > Raster Calculator

Understanding Flow Accumulation Grid

Change symbology of flow accumulation grid to fine tune the drainage area thresholds

Flow Accumulation Grid

- Ideal for smaller tributaries
- Not ideal for large rivers
 - HUGE raster needed to calculate drainage area
 - Use in combination with USGS StreamStats for large rivers
- Great for planning design parameters based on drainage area
- Excellent resource for planning delineations and estimated linear footage of stream on a project site

Conclusions

- Public available LiDAR is usually found as bare earth DEMs or LAS files
 - Bare Earth DEMs can be used with little to no processing
 - LAS files require careful processing
- Bare Earth DEMs can be used to:
 - Identify various landforms or surficial geology
 - Areas of erosion
 - Anthropogenic disturbances
 - Create flow accumulation grids
 - Use for design purposes
 - Etc. the possibilities go on and on

Questions?

Connect with us!

