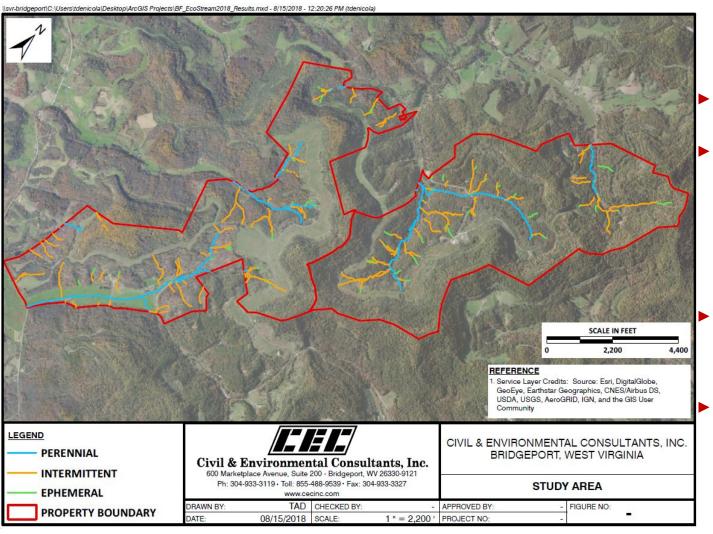


Stream Restoration on Mining Impacted Watersheds


West Virginia Mitigation Banking

Timothy A. Denicola

Purpose

- Applying natural stream design to improve ecological function of degraded watersheds
 - Restore streams to stable geomorphologic condition
 - Revegetate stream buffers, eradicate invasive vegetation
 - Deed restrict property access
- Project Area located on Abandoned Mine Land (AML)
- Reduce AML impacts on restoration success

Study Area

- Northern WV
- Surface & Underground
 - Redstone Coal
 - Pittsburgh Coal
- Partial Reclamation
 - 303(d) TMDL
- Total Iron

||svr-bridgeport|C:\Users\tdenicola\Desktop\ArcGIS Projects\BF EcoStream2018 Results.mxd - 8/15/2018 - 12:19:28 PM (tdenicola) SCALE IN FEET REFERENCE 1. Service Layer Credits: Source: Esri, DigitalGlobe, LEGEND GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User PERENNIAL INTERMITTENT CIVIL & ENVIRONMENTAL CONSULTANTS, INC. **EPHEMERAL** BRIDGEPORT, WEST VIRGINIA Civil & Environmental Consultants, Inc. SURFACE MINING 600 Marketplace Avenue, Suite 200 - Bridgeport, WV 26330-9121 Ph: 304-933-3119 · Toll: 855-488-9539 · Fax: 304-933-3327 STUDY AREA UNDERGROUND MINING www.cecinc.com DRAWN BY: CHECKED BY: APPROVED BY: FIGURE NO: PROPERTY BOUNDARY 08/15/2018 SCALE: 1 " = 2,200 ' PROJECT NO:

Study Area

- Northern WV
 - Surface & Underground
 - Redstone Coal
 - Pittsburgh Coal
 - Partial Reclamation
 - 303(d) TMDL
 - Total Iron

Residual Mining Impacts

Disturbs local and regional geomorphology, hydrology, chemistry, and ecology

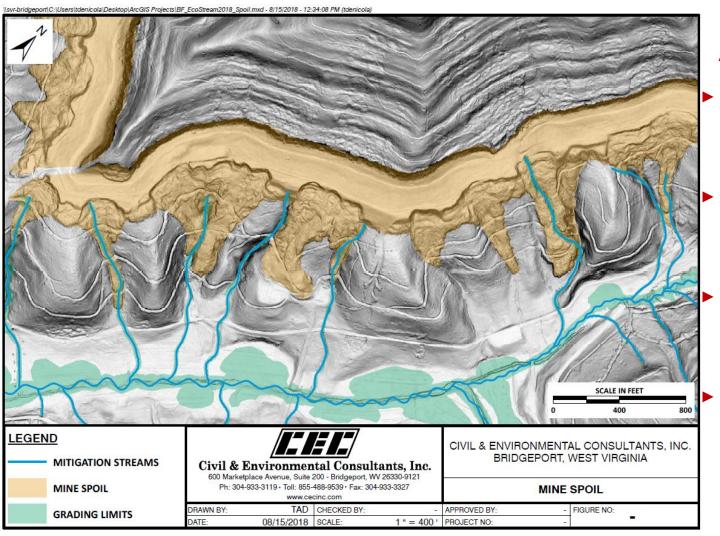
- Excavation of geologic units
- Disposal of overburden
- Development of surface seeps and mine pools
- Impacts to tributary headwaters
- Generation of acidity, metal precipitates (Fe, Al, Mn), and Total Dissolved Solids (TDS)
- Degradation of aquatic habitats

Residual Mining Impacts

Civil & Environmental Consultants, Inc.

Impacts on Stream Restoration

- Acid generation;
- Ochres precipitate;
- ► High TDS;
- Disconnected tributary headwaters; and
- Excavation of unstable mine spoil.



Standard Approach

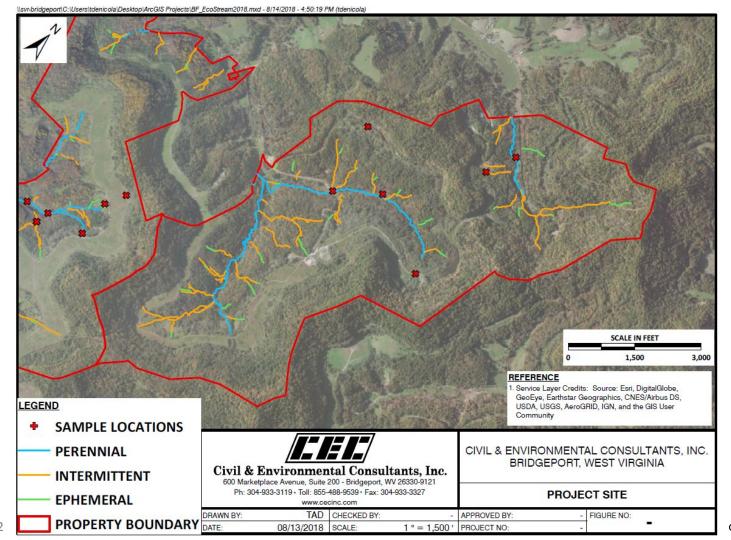
- Identify areas with potential for impairment
 - High Iron, discoloration, reduced substrate porosity
 - High TDS, aquatic impacts
 - Unstable construction material
- Geotechnical (Physical & Chemical)
 - Compressive & shear strengths, density, moisture, Atterburg Limits, factor of safety
 - Acid-base accounting (ABA), reactive sulfur, total iron
- Sampling Strategies (Barnhisel et. al. 2000)

Approach

- Identify spoil from high resolution LIDAR imagery
- Overlay grading limits on digitized spoil area
- "Hot" material heterogeneously distributed
- Proceed with geotechnical assessment

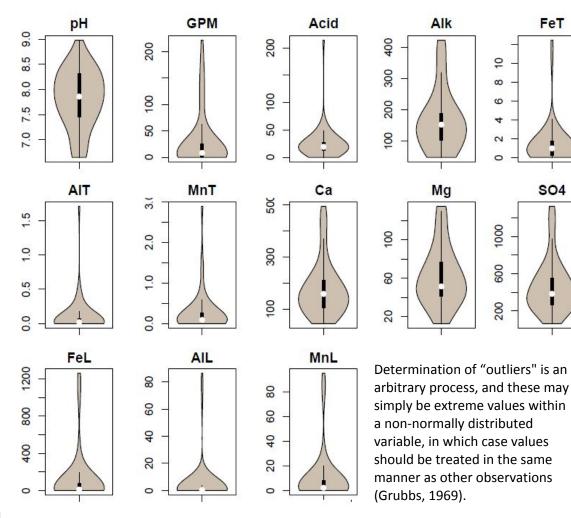
Civil & Environmental Consultants, Inc.

Modified Approach


- Watershed approach vs. geotechnical approach
 - Utilize data collected for watershed planning purposes
 - Utilize statistical techniques to classify variables
- Data collection (43 water quality samples)
 - Collected spatially and temporally
 - Collected from headwaters, tributaries, mainstems, wetlands, seeps, etc..
 - Collected Nov 2016, Oct 2017, Nov 2017, Dec 2017

1 " = 1,500 ' PROJECT NO:

08/13/2018 SCALE:



Approach

- Quality Assurance / Quality Control (QA/QC)
 - Half minimum detection limit (MDL) for non-detects
 - Charge balance error (CBE)
- Univariate Statistical Techniques
 - Assessed distribution, median, lower/upper quartile, min/max, outliers
- Bivariate Statistical Techniques
 - Utilized principal component analysis (PCA) to classify variables
 - Utilized cluster analysis to assign variables to categories

Alk

Mg

400

300

200

100

100

9

20

FeT

SO4

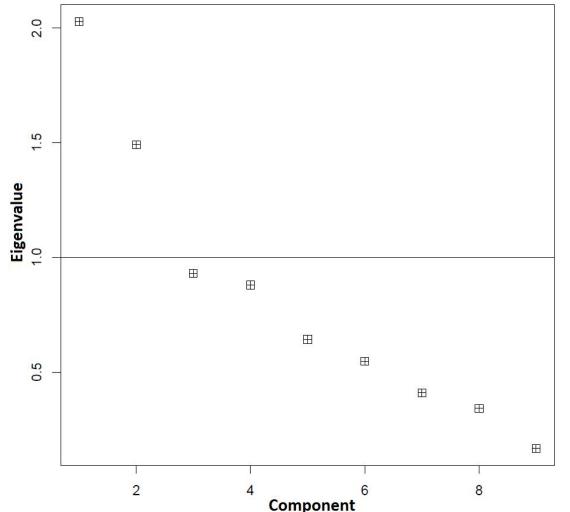
9

8

9

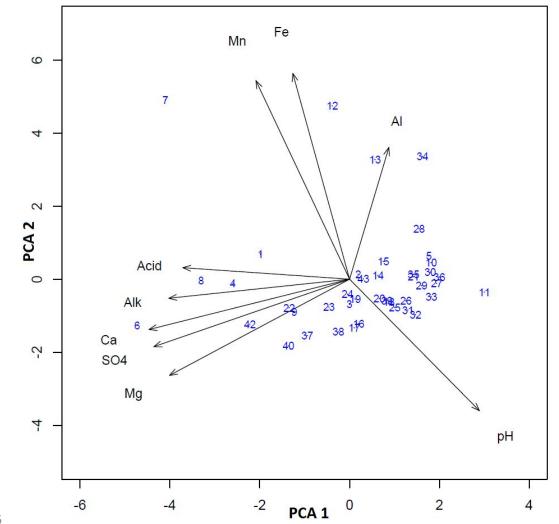
4

2

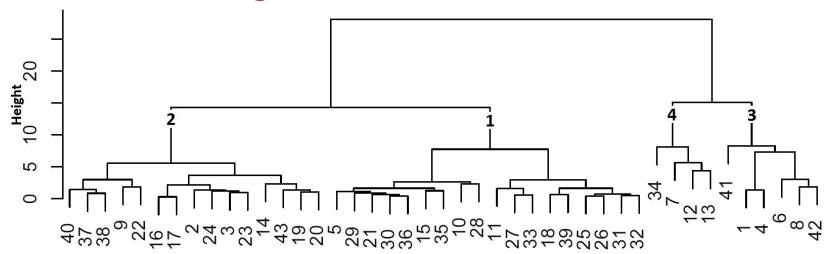

1000

900

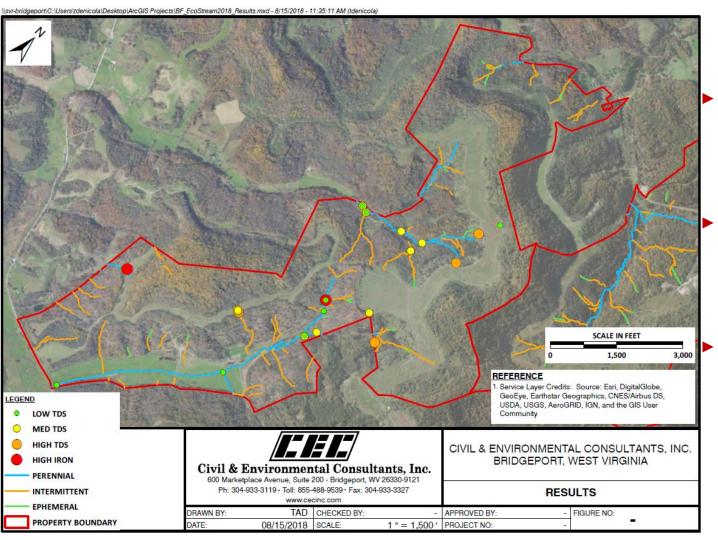
200


- Normal Distribution
 - pH and TDS
 - **Skewed Distribution**
 - Metals and Load
 - **Outliers**
 - Grubs, 1969
 - Overall alkaline, low metal, high TDS
 - TDS driven by Ca, Alk, SO4

- Two eigenvectors exceed the Kaiser criterion of 1.0 (1960)
- Average eigenvalue expected to equal 1.0
- Values greater than 1.0 indicate scores with greater sample variance



- PCA 1+
 - Low TDS
 - pH, Al
- PCA 2-
 - Mod. TDS
 - pH, Alk, Ca, Mg, SO4
- PCA 1-
 - High TDS
 - Acid, Alk, Fe, Mn, Ca, Mg, SO4
- ► PCA 2+
 - High Metals
 - Acid, Fe, Al, Mn



Cluster Analysis

- Cluster 1 Low TDS (15 samples)
- Cluster 2 Mod. TDS (18 samples)
- Cluster 3 High TDS (6 samples)
- Cluster 4 High Iron (4 samples)

- Headwaters:
- High TDS

- **Tributaries:**
- Moderate TDS

- Mainstem:
- Low TDS

\svr-bridgeport\C:\Users\tdenicola\Desktop\ArcGIS Projects\BF_EcoStream2018_Results.mxd - 8/15/2018 - 11:34:23 AM (tdenicola) SCALE IN FEET REFERENCE Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User LOW TDS MED TDS HIGH TDS CIVIL & ENVIRONMENTAL CONSULTANTS, INC. **HIGH IRON** BRIDGEPORT, WEST VIRGINIA Civil & Environmental Consultants, Inc. PERENNIAL 600 Marketplace Avenue, Suite 200 - Bridgeport, WV 26330-9121 Ph: 304-933-3119 · Toll: 855-488-9539 · Fax: 304-933-3327 RESULTS INTERMITTENT **EPHEMERAL** TAD CHECKED BY: DRAWN BY: APPROVED BY: FIGURE NO: PROPERTY BOUNDARY 08/15/2018 SCALE: 1 " = 1,500 ' PROJECT NO: DATE:

Results

Nonconformity:

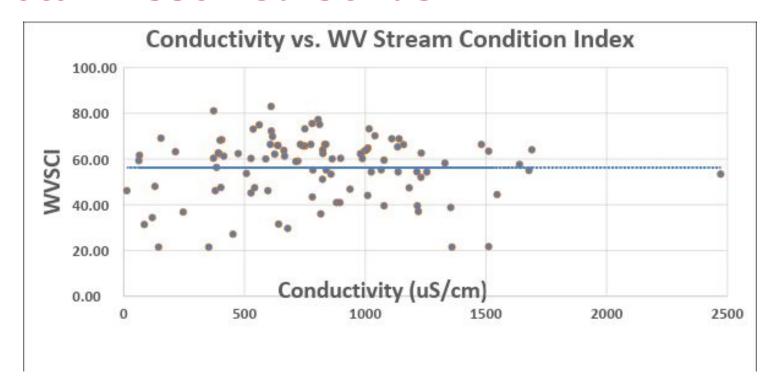
- Headwater Iron
- Mainstem Iron

Mine Benches

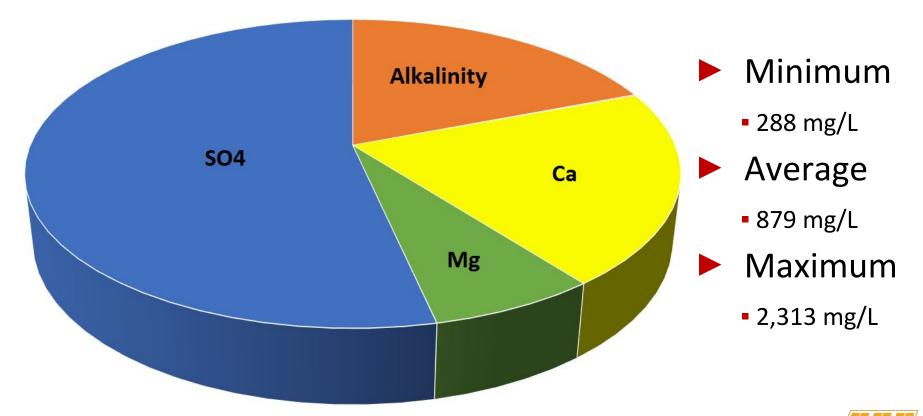
Low TDS

Mainstem

Temporal variation


Field Verification

- Field reconnaissance of select areas identified iron seeps
 - Field Testing Kits, Groundwater Piezometers



Total Dissolved Solids

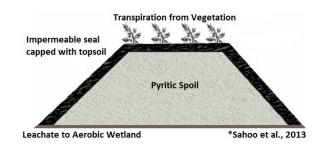
Total Dissolved Solids

Reclamation Techniques for AML

- Grading and drainage
- Material handling plans for "hot" material
 - Disposal of reactive material offsite
 - Encapsulating reactive material onsite
- Active, semi-active, and passive chemical treatment
 - Fully automated treatment facilities
 - Semi-automated reagent delivery with passive techniques
 - Limestone beds, settling ponds, aerobic wetlands

Example Techniques for AML

*Bingmaps.com


Modifications for Restoration

- "Hot" mine spoil identification
- Excavation and sequestration
- Soil amendment
- Aerobic wetland construction ("treatment cells")
- Impermeable barrier installation
- Hydraulic structures for spoil stabilization
- Alluvial fans to reconnect headwaters
- Natural site stabilization / revegetation

Mine Spoil Handling

- Excavate and sequester "hot" material to designated disposal areas
 - Encapsulate with impermeable material
 - Revegetate
 - Construct BMPs for leachate (treatment cells)
- Amend remaining spoil within grading limits
 - Limestone fines (Ag. Lime) and organic compost
 - Alkalinity reduces prevalence of acidophilic, iron-oxidizing bacteria
 - Organic compost depletes oxygen available for mineral oxidation

Aerobic Wetlands (Treatment Cells)

Impermeable Barriers

- Onsite clay-rich soil
 - Excavated from nearby pastureland
- Soil/bentonite slurry
 - Mixed onsite with grout-like application technique
- Bentomat or Claymax brand geo-synthetic liners
 - Keyed in beyond bankfull

Physical Stabilization

Alluvial Fans

Natural Site Stabilization

- Initial Construction
 - Introduces oxygenated groundwater
 - Increases mineral surface area exposure
 - First-flush of recently exposed/oxidized constituents
- Post-Construction
 - Progressive depletion of groundwater oxygen
 - Stabilization of water table
 - Depletion of first-flush mineral concentrations
- Revegetation
 - Aides site stabilization
 - Increased transpiration, reduces groundwater/mineral interaction

Anticipated Outcome

- Anticipated Outcome
 - Reduced discoloration
 - Reduced conductivity
 - Increased WV Stream Condition Index (WVSCI) scores
 - Increased Stream and Wetland Valuation Metric (SWVM) scores

- Southern WV Coalfields
- Tennessee Cumberland Plateau

Questions / Comments

Timothy A. Denicola

Project Manager / Geochemist

Civil & Environmental Consultants, Inc.

600 Marketplace Ave · Suite 200 · Bridgeport, WV 26330

Toll-Free: (855) 488-9539 · Fax: (304) 933-3327

Mobile: 304-838-8475 · http://www.cecinc.com

Email: tdenicola@cecinc.com

